IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp2528-2539.html
   My bibliography  Save this article

Exergy-based evaluation of methanol production from natural gas with CO2 utilization

Author

Listed:
  • Blumberg, Timo
  • Morosuk, Tatiana
  • Tsatsaronis, George

Abstract

Energy and exergy analyses were carried out for a medium-capacity methanol plant based on a low-pressure synthesis process for natural gas. The process comprises a pretreatment of natural gas, a steam-methane reforming unit for generation of synthesis gas, a methanol synthesis, a distillation of crude methanol, and an integrated steam cycle for waste heat recovery. Carbon dioxide from carbon capture is used for gas conditioning by adjusting the syngas module for methanol synthesis through counterbalancing of the excess hydrogen. A sensitivity analysis was performed to identify favorable operation parameters for the tubular steam reformer. The energetic and exergetic efficiencies for the overall system were found to be 35.9% and 37.7%, respectively. The specific energy requirements (energy intensities) are 19.6 GJth/tCH3OH and 0.8 GJel/tCH3OH, while the specific methane consumption was calculated to be 0.54 ton CH4 per ton CH3OH. Compared to a stand-alone plant, the utilization of carbon dioxide increases the methanol yield by 22%. The exergy analysis shows that the highest inefficiencies occur in the reforming unit, the steam cycle, and the synthesis unit. In particular, the steam reformer, the synthesis reactor, and several heat exchangers show a high potential for thermodynamic improvement.

Suggested Citation

  • Blumberg, Timo & Morosuk, Tatiana & Tsatsaronis, George, 2017. "Exergy-based evaluation of methanol production from natural gas with CO2 utilization," Energy, Elsevier, vol. 141(C), pages 2528-2539.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2528-2539
    DOI: 10.1016/j.energy.2017.06.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217311398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.06.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timo Blumberg & Max Sorgenfrei & George Tsatsaronis, 2015. "Design and Assessment of an IGCC Concept with CO 2 Capture for the Co-Generation of Electricity and Substitute Natural Gas," Sustainability, MDPI, vol. 7(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patel, Sanjay K.S. & Kondaveeti, Sanath & Otari, Sachin V. & Pagolu, Ravi T. & Jeong, Seong Hun & Kim, Sun Chang & Cho, Byung-Kwan & Kang, Yun Chan & Lee, Jung-Kul, 2018. "Repeated batch methanol production from a simulated biogas mixture using immobilized Methylocystis bryophila," Energy, Elsevier, vol. 145(C), pages 477-485.
    2. Yih-Hang Chen & David Shan-Hill Wong & Ya-Chien Chen & Chao-Min Chang & Hsuan Chang, 2019. "Design and Performance Comparison of Methanol Production Processes with Carbon Dioxide Utilization," Energies, MDPI, vol. 12(22), pages 1-18, November.
    3. Huang, Yue & Zhu, Lin & He, Yangdong & Wang, Yuan & Hao, Qiang & Zhu, Yifei, 2023. "Carbon dioxide utilization based on exergoenvironmental sustainability assessment: A case study of CO2 hydrogenation to methanol," Energy, Elsevier, vol. 273(C).
    4. Kotowicz, J. & Brzęczek, M., 2021. "Methods to increase the efficiency of production and purification installations of renewable methanol," Renewable Energy, Elsevier, vol. 177(C), pages 568-583.
    5. Lee, Boreum & Lee, Hyunjun & Lim, Dongjun & Brigljević, Boris & Cho, Wonchul & Cho, Hyun-Seok & Kim, Chang-Hee & Lim, Hankwon, 2020. "Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible?," Applied Energy, Elsevier, vol. 279(C).
    6. Pauletto, Gianluca & Galli, Federico & Gaillardet, Alice & Mocellin, Paolo & Patience, Gregory S., 2021. "Techno economic analysis of a micro Gas-to-Liquid unit for associated natural gas conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Nakyai, Teeranun & Patcharavorachot, Yaneeporn & Arpornwichanop, Amornchai & Saebea, Dang, 2020. "Comparative exergoeconomic analysis of indirect and direct bio-dimethyl ether syntheses based on air-steam biomass gasification with CO2 utilization," Energy, Elsevier, vol. 209(C).
    8. Marcello De Falco & Gianluca Natrella & Mauro Capocelli & Paulina Popielak & Marcelina Sołtysik & Dariusz Wawrzyńczak & Izabela Majchrzak-Kucęba, 2022. "Exergetic Analysis of DME Synthesis from CO 2 and Renewable Hydrogen," Energies, MDPI, vol. 15(10), pages 1-20, May.
    9. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    10. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
    11. Blumberg, Timo & Morosuk, Tatiana & Tsatsaronis, George, 2019. "CO2-utilization in the synthesis of methanol: Potential analysis and exergetic assessment," Energy, Elsevier, vol. 175(C), pages 730-744.
    12. Qiu, Fei & Sun, Zhen & Li, Huiping & Qian, Qian, 2023. "Process simulation and multi-aspect analysis of methanol production through blast furnace gas and landfill gas," Energy, Elsevier, vol. 285(C).
    13. Tabibian, Seyed Shayan & Sharifzadeh, Mahdi, 2023. "Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    14. Greeff, Isabella L., 2022. "Using synthesis gas heat to produce work via an externally fired gas power cycle," Energy, Elsevier, vol. 239(PB).
    15. Kler, Aleksandr M. & Tyurina, Elina A. & Mednikov, Aleksandr S., 2018. "A plant for methanol and electricity production: Technical-economic analysis," Energy, Elsevier, vol. 165(PB), pages 890-899.
    16. Henrik Von Storch & Sonja Becker-Hardt & Christian Sattler, 2018. "(Solar) Mixed Reforming of Methane: Potential and Limits in Utilizing CO 2 as Feedstock for Syngas Production—A Thermodynamic Analysis," Energies, MDPI, vol. 11(10), pages 1-14, September.
    17. Li, Xiaodong & Jinxi, Wang, 2023. "A novel process for the simultaneous production of methanol, oxygen, and electricity using a PEM electrolyzer and agricultural-based landfill gas-fed oxyfuel combustion power plant," Energy, Elsevier, vol. 284(C).
    18. Chen, Xue & Wang, Fuqiang & Yan, Xuewei & Han, Yafen & Cheng, Ziming & Jie, Zhu, 2018. "Thermochemical performance of solar driven CO2 reforming of methane in volumetric reactor with gradual foam structure," Energy, Elsevier, vol. 151(C), pages 545-555.
    19. Blumberg, Timo & Lee, Young Duk & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Exergoenvironmental analysis of methanol production by steam reforming and autothermal reforming of natural gas," Energy, Elsevier, vol. 181(C), pages 1273-1284.
    20. Wiesberg, Igor Lapenda & Brigagão, George Victor & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Carbon dioxide management via exergy-based sustainability assessment: Carbon Capture and Storage versus conversion to methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 720-732.
    21. Kotowicz, Janusz & Węcel, Daniel & Brzęczek, Mateusz, 2021. "Analysis of the work of a “renewable” methanol production installation based ON H2 from electrolysis and CO2 from power plants," Energy, Elsevier, vol. 221(C).
    22. Mohammed Bin Afif & Abdulla Bin Afif & Harry Apostoleris & Krishiv Gandhi & Anup Dadlani & Amal Al Ghaferi & Jan Torgersen & Matteo Chiesa, 2022. "Ultra-Cheap Renewable Energy as an Enabling Technology for Deep Industrial Decarbonization via Capture and Utilization of Process CO 2 Emissions," Energies, MDPI, vol. 15(14), pages 1-15, July.
    23. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossam A. Gabbar & Mohamed Aboughaly & Stefano Russo, 2017. "Conceptual Design and Energy Analysis of Integrated Combined Cycle Gasification System," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    2. Jiuping Xu & Lurong Fan & Chengwei Lv, 2017. "Equilibrium Strategy Based Recycling Facility Site Selection towards Mitigating Coal Gangue Contamination," Sustainability, MDPI, vol. 9(2), pages 1-27, February.
    3. Luis Olmos-Villalba & Bernardo Herrera & Anderson Gallego & Karen Cacua, 2019. "Experimental Evaluation of a Diesel Cogeneration System for Producing Power and Drying Aromatic Herbs," Sustainability, MDPI, vol. 11(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2528-2539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.