IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v162y2018icp1029-1040.html
   My bibliography  Save this article

Experimental study on different preheating methods for the cold-start of PEMFC stacks

Author

Listed:
  • Zhan, Zhigang
  • Yuan, Chong
  • Hu, Zhangrong
  • Wang, Hui
  • Sui, P.C.
  • Djilali, Ned
  • Pan, Mu

Abstract

Rapid and safe start-up from sub-zero temperatures for polymer electrolyte membrane fuel cells (PEMFCs) is a crucial know-how to guarantee these fuel cells’ operation under severe weather conditions and to prolong their lifetime. Taking into consideration the disparity in thermal properties, different rising time in temperature and responses to preheating method and control strategy between the membrane electrode assembly and stack hardware, a phase-in preheating method is proposed in the present study. A series of cold start-up experiments for a 2 kW stack were carried out with different preheating methods, including air preheating, coolant preheating, air and end plate preheating under −10 °C and −20 °C temperature conditions. The experimental results verified the phase-in preheating strategy, and conclude that the corresponding optimal preheating method is to first preheat the stack by air and the end plates simultaneously, and to switch on the stack operation at suitable timing when the stack’s temperature is above −5 °C. It is also found that when the stack temperature reaches a threshold value, 24 °C in the present study, humidification of the reactants and circulation of coolant can be started to bring the stack to normal operating conditions. A thermal analysis for energy balance in the system was performed to gain insight to the problem. By comparing the heat transfer by different fluid (air and coolant) and parts (end plates), it is found that preheating by air along is slow, whereas heating the end plates is fast and time-efficient. Furthermore, it becomes clear that the optimal preheating method is to utilize the waste heat efficiently, which can be achieved by switching on the stack operation at proper timing.

Suggested Citation

  • Zhan, Zhigang & Yuan, Chong & Hu, Zhangrong & Wang, Hui & Sui, P.C. & Djilali, Ned & Pan, Mu, 2018. "Experimental study on different preheating methods for the cold-start of PEMFC stacks," Energy, Elsevier, vol. 162(C), pages 1029-1040.
  • Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:1029-1040
    DOI: 10.1016/j.energy.2018.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218315111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Hong-Yue & Santamaria, Anthony D. & Bachman, John & Park, Jae Wan, 2013. "Vacuum-assisted drying of polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 107(C), pages 264-270.
    2. Lin, R. & Ren, Y.S. & Lin, X.W. & Jiang, Z.H. & Yang, Z. & Chang, Y.T., 2017. "Investigation of the internal behavior in segmented PEMFCs of different flow fields during cold start process," Energy, Elsevier, vol. 123(C), pages 367-377.
    3. Ko, Johan & Ju, Hyunchul, 2012. "Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 94(C), pages 364-374.
    4. Lee, Yongtaek & Kim, Bosung & Kim, Yongchan & Li, Xianguo, 2011. "Degradation of gas diffusion layers through repetitive freezing," Applied Energy, Elsevier, vol. 88(12), pages 5111-5119.
    5. Rahgoshay, S.M. & Ranjbar, A.A. & Ramiar, A. & Alizadeh, E., 2017. "Thermal investigation of a PEM fuel cell with cooling flow field," Energy, Elsevier, vol. 134(C), pages 61-73.
    6. Elden, Gülşah & Çelik, Muhammet & Genç, Gamze & Yapıcı, Hüseyin, 2016. "The effects of temperature on transport phenomena in phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 103(C), pages 772-783.
    7. Hosseinzadeh, Elham & Rokni, Masoud & Rabbani, Abid & Mortensen, Henrik Hilleke, 2013. "Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system," Applied Energy, Elsevier, vol. 104(C), pages 434-444.
    8. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    9. Amamou, A. & Kandidayeni, M. & Boulon, L. & Kelouwani, S., 2018. "Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 216(C), pages 21-30.
    10. Rangel-Hernandez, V.H. & Damian-Ascencio, C. & Juarez-Robles, D. & Gallegos-Muñoz, A. & Zaleta-Aguilar, A. & Plascencia-Mora, H., 2011. "Entropy generation analysis of a proton exchange membrane fuel cell (PEMFC) with a fermat spiral as a flow distributor," Energy, Elsevier, vol. 36(8), pages 4864-4870.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zenan Shen & Shaoquan Liu & Wei Zhu & Daoyuan Ren & Qiang Xu & Yu Feng, 2024. "A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones," Energies, MDPI, vol. 17(16), pages 1-36, August.
    2. Montaner Ríos, G. & Schirmer, J. & Gentner, C. & Kallo, J., 2020. "Efficient thermal management strategies for cold starts of a proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 279(C).
    3. Kim, Soohwan & Jeong, Hoyoung & Lee, Hoseong, 2021. "Cold-start performance investigation of fuel cell electric vehicles with heat pump-assisted thermal management systems," Energy, Elsevier, vol. 232(C).
    4. Wei Jiang & Ke Song & Bailin Zheng & Yongchuan Xu & Ruoshi Fang, 2020. "Study on Fast Cold Start-Up Method of Proton Exchange Membrane Fuel Cell Based on Electric Heating Technology," Energies, MDPI, vol. 13(17), pages 1-26, August.
    5. Gießgen, Tom & Jahnke, Thomas, 2023. "Assisted cold start of a PEMFC with a thermochemical preheater: A numerical study," Applied Energy, Elsevier, vol. 331(C).
    6. Cao, Qiming & Min, Haitao & Sun, Weiyi & Zhao, Honghui & Yu, Yuanbin & Zhang, Zhaopu & Jiang, Junyu, 2024. "A method of combining active and passive strategies by genetic algorithm in multi-stage cold start of proton exchange membrane fuel cell," Energy, Elsevier, vol. 288(C).
    7. Song, Zhen & Pan, Yue & Chen, Huicui & Zhang, Tong, 2021. "Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review," Applied Energy, Elsevier, vol. 302(C).
    8. Zhou, Yu & Chen, Ben & Chen, Wenshang & Deng, Qihao & Shen, Jun & Tu, Zhengkai, 2022. "A novel opposite sinusoidal wave flow channel for performance enhancement of proton exchange membrane fuel cell," Energy, Elsevier, vol. 261(PB).
    9. Wang, Ya-Xiong & Chen, Quan & Zhang, Jin & He, Hongwen, 2021. "Real-time power optimization for an air-coolant proton exchange membrane fuel cell based on active temperature control," Energy, Elsevier, vol. 220(C).
    10. Kurnia, Jundika C. & Chaedir, Benitta A. & Sasmito, Agus P. & Shamim, Tariq, 2021. "Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions," Applied Energy, Elsevier, vol. 283(C).
    11. Li, Linjun & Wang, Shixue & Yue, Like & Wang, Guozhuo, 2019. "Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode," Applied Energy, Elsevier, vol. 254(C).
    12. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
    13. Lin, Rui & Zhu, Yike & Ni, Meng & Jiang, Zhenghua & Lou, Diming & Han, Lihang & Zhong, Di, 2019. "Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start," Applied Energy, Elsevier, vol. 241(C), pages 420-432.
    14. Liu, Shihua & Chen, Tao & Zhang, Cheng & Xie, Yi, 2020. "Study on the performance of proton exchange membrane fuel cell (PEMFC) with dead-ended anode in gravity environment," Applied Energy, Elsevier, vol. 261(C).
    15. Xu, Sheng & Yin, Bifeng & Li, Zekai & Dong, Fei, 2023. "A review on gas purge of proton exchange membrane fuel cells: Mechanisms, experimental approaches, numerical approaches, and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    16. Cai, Yonghua & Wu, Di & Sun, Jingming & Chen, Ben, 2021. "The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC," Energy, Elsevier, vol. 222(C).
    17. Stropnik, R. & Sekavčnik, M. & Ferriz, A.M. & Mori, M., 2018. "Reducing environmental impacts of the ups system based on PEM fuel cell with circular economy," Energy, Elsevier, vol. 165(PB), pages 824-835.
    18. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Jiao, Kui, 2019. "Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model," Energy, Elsevier, vol. 183(C), pages 462-476.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    2. Li, Linjun & Wang, Shixue & Yue, Like & Wang, Guozhuo, 2019. "Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode," Applied Energy, Elsevier, vol. 254(C).
    3. Lin, Rui & Zhu, Yike & Ni, Meng & Jiang, Zhenghua & Lou, Diming & Han, Lihang & Zhong, Di, 2019. "Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start," Applied Energy, Elsevier, vol. 241(C), pages 420-432.
    4. Zang, Linfeng & Hao, Liang & Zhu, Xiaojing, 2023. "Effect of the pore structure of cathode catalyst layer on the PEM fuel cell cold start process," Energy, Elsevier, vol. 271(C).
    5. Knorr, Florian & Sanchez, Daniel Garcia & Schirmer, Johannes & Gazdzicki, Pawel & Friedrich, K.A., 2019. "Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 1-10.
    6. Amamou, A. & Kandidayeni, M. & Boulon, L. & Kelouwani, S., 2018. "Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 216(C), pages 21-30.
    7. Pan, Weitong & Li, Ping & Gan, Quanquan & Chen, Xueli & Wang, Fuchen & Dai, Gance, 2020. "Thermal stability analysis of cold start processes in PEM fuel cells," Applied Energy, Elsevier, vol. 261(C).
    8. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    9. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    10. Chunjuan Shen & Sichuan Xu & Lei Pan & Yuan Gao, 2021. "A High-Efficiency Cooperative Control Strategy of Active and Passive Heating for a Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 14(21), pages 1-11, November.
    11. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
    12. Pahon, E. & Yousfi Steiner, N. & Jemei, S. & Hissel, D. & Moçoteguy, P., 2016. "A signal-based method for fast PEMFC diagnosis," Applied Energy, Elsevier, vol. 165(C), pages 748-758.
    13. Maximilian Schmitz & Matthias Bahr & Sönke Gößling & Stefan Pischinger, 2023. "Analysis of Ice Formation during Start-Up of PEM Fuel Cells at Subzero Temperatures Using Experimental and Simulative Methods," Energies, MDPI, vol. 16(18), pages 1-26, September.
    14. Oh, Hwanyeong & Park, Jaeman & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2015. "Effects of pore size gradient in the substrate of a gas diffusion layer on the performance of a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 149(C), pages 186-193.
    15. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    16. Cao, Qiming & Min, Haitao & Sun, Weiyi & Zhao, Honghui & Yu, Yuanbin & Zhang, Zhaopu & Jiang, Junyu, 2024. "A method of combining active and passive strategies by genetic algorithm in multi-stage cold start of proton exchange membrane fuel cell," Energy, Elsevier, vol. 288(C).
    17. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    18. Purnima, P. & Jayanti, S., 2017. "Water neutrality and waste heat management in ethanol reformer - HTPEMFC integrated system for on-board hydrogen generation," Applied Energy, Elsevier, vol. 199(C), pages 169-179.
    19. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    20. Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:162:y:2018:i:c:p:1029-1040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.