IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6534-d1237444.html
   My bibliography  Save this article

Analysis of Ice Formation during Start-Up of PEM Fuel Cells at Subzero Temperatures Using Experimental and Simulative Methods

Author

Listed:
  • Maximilian Schmitz

    (Chair of Thermodynamics of Mobile Energy Conversion Systems (TME), RWTH Aachen University, Forckenbeckstraße 4, 52074 Aachen, Germany)

  • Matthias Bahr

    (The Hydrogen and Fuel Cell Center (ZBT), Carl-Benz-Straße 201, 47057 Duisburg, Germany)

  • Sönke Gößling

    (The Hydrogen and Fuel Cell Center (ZBT), Carl-Benz-Straße 201, 47057 Duisburg, Germany)

  • Stefan Pischinger

    (Chair of Thermodynamics of Mobile Energy Conversion Systems (TME), RWTH Aachen University, Forckenbeckstraße 4, 52074 Aachen, Germany)

Abstract

Freeze start is a challenge in the commercialization of PEM fuel cells. In this study, ice formation in cell layers is investigated through experiments and simulations. Segmentation of the fuel cell on the test bench allows to determine the local distributions of current density and high frequency resistance over the active cell area. The location and timing of ice formation are analyzed in the experiments. It is shown that the formation of ice lenses can be detected by local measurements of the high frequency resistances. Then, a multiphysical CFD model is built and validated with the measurements and the commonalities and differences between the model results and the experiments are studied. It is shown that the model determines the freeze start behavior very well in wide operating ranges. Together with the findings from the experimental investigations, the model will finally be used to investigate local ice formation in detail.

Suggested Citation

  • Maximilian Schmitz & Matthias Bahr & Sönke Gößling & Stefan Pischinger, 2023. "Analysis of Ice Formation during Start-Up of PEM Fuel Cells at Subzero Temperatures Using Experimental and Simulative Methods," Energies, MDPI, vol. 16(18), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6534-:d:1237444
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Dengcheng & Lin, Rui & Feng, Bowen & Han, Lihang & Zhang, Yu & Ni, Meng & Wu, Sai, 2019. "Localised electrochemical impedance spectroscopy investigation of polymer electrolyte membrane fuel cells using Print circuit board based interference-free system," Applied Energy, Elsevier, vol. 254(C).
    2. Lin, R. & Ren, Y.S. & Lin, X.W. & Jiang, Z.H. & Yang, Z. & Chang, Y.T., 2017. "Investigation of the internal behavior in segmented PEMFCs of different flow fields during cold start process," Energy, Elsevier, vol. 123(C), pages 367-377.
    3. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    4. Ko, Johan & Ju, Hyunchul, 2012. "Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 94(C), pages 364-374.
    5. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zang, Linfeng & Hao, Liang & Zhu, Xiaojing, 2023. "Effect of the pore structure of cathode catalyst layer on the PEM fuel cell cold start process," Energy, Elsevier, vol. 271(C).
    2. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    3. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    4. Cao, Qiming & Min, Haitao & Sun, Weiyi & Zhao, Honghui & Yu, Yuanbin & Zhang, Zhaopu & Jiang, Junyu, 2024. "A method of combining active and passive strategies by genetic algorithm in multi-stage cold start of proton exchange membrane fuel cell," Energy, Elsevier, vol. 288(C).
    5. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    6. Li, Linjun & Wang, Shixue & Yue, Like & Wang, Guozhuo, 2019. "Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode," Applied Energy, Elsevier, vol. 254(C).
    7. Xu, Jiamin & Zhang, Caizhi & Wan, Zhongmin & Chen, Xi & Chan, Siew Hwa & Tu, Zhengkai, 2022. "Progress and perspectives of integrated thermal management systems in PEM fuel cell vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    9. Zhan, Zhigang & Yuan, Chong & Hu, Zhangrong & Wang, Hui & Sui, P.C. & Djilali, Ned & Pan, Mu, 2018. "Experimental study on different preheating methods for the cold-start of PEMFC stacks," Energy, Elsevier, vol. 162(C), pages 1029-1040.
    10. Andersson, M. & Beale, S.B. & Espinoza, M. & Wu, Z. & Lehnert, W., 2016. "A review of cell-scale multiphase flow modeling, including water management, in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 180(C), pages 757-778.
    11. Ding, Feng & Zou, Tingting & Wei, Tao & Chen, Lei & Qin, Xiaoping & Shao, Zhigang & Yang, Jianjun, 2023. "The pinhole effect on proton exchange membrane fuel cell (PEMFC) current density distribution and temperature distribution," Applied Energy, Elsevier, vol. 342(C).
    12. Amamou, A. & Kandidayeni, M. & Boulon, L. & Kelouwani, S., 2018. "Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 216(C), pages 21-30.
    13. Dafalla, Ahmed Mohmed & Wei, Lin & Liao, Zihao & Guo, Jian & Jiang, Fangming, 2023. "Influence of cathode channel blockages on the cold start performance of proton exchange membrane fuel cell: A numerical study," Energy, Elsevier, vol. 263(PA).
    14. Yin, Cong & Cao, Jishen & Tang, Qilin & Su, Yanghuai & Wang, Renkang & Li, Kai & Tang, Hao, 2022. "Study of internal performance of commercial-size fuel cell stack with 3D multi-physical model and high resolution current mapping," Applied Energy, Elsevier, vol. 323(C).
    15. Lin, Rui & Zhu, Yike & Ni, Meng & Jiang, Zhenghua & Lou, Diming & Han, Lihang & Zhong, Di, 2019. "Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start," Applied Energy, Elsevier, vol. 241(C), pages 420-432.
    16. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    17. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    18. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    19. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    20. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6534-:d:1237444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.