IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7301-d671748.html
   My bibliography  Save this article

A High-Efficiency Cooperative Control Strategy of Active and Passive Heating for a Proton Exchange Membrane Fuel Cell

Author

Listed:
  • Chunjuan Shen

    (School of Automotive Studies, Tongji University, Shanghai 201804, China
    Shanghai Ranrui New Energy Vehicle Technology Co., Ltd., Shanghai 201804, China)

  • Sichuan Xu

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Lei Pan

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

  • Yuan Gao

    (School of Automotive Studies, Tongji University, Shanghai 201804, China)

Abstract

The key to overcome PEMFC cold start failure is to raise the stack temperature above 0 °C before the electrochemical reaction. As the electrochemical reaction progresses, reaction heat is released inside the stack, which will heat the PEMFC stack. This heating method is called passive heating, referred to as PH in this article. Another method, called active heating, or simplified to AH in this article, involves artificially adding a device to the stack to input extra heat to the stack to increase the stack temperature more quickly and reduce the icing rate of the stack water. In this study, an optimal cooperative control strategy of AH and PH is explored by integrating AH and PH. The most effective cold start can be achieved when the temperature of the stack is raised to −20 °C by using AH with the reaction heat of the stack itself. This study provides guidance for optimizing the cold start performance of a PEMFC.

Suggested Citation

  • Chunjuan Shen & Sichuan Xu & Lei Pan & Yuan Gao, 2021. "A High-Efficiency Cooperative Control Strategy of Active and Passive Heating for a Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 14(21), pages 1-11, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7301-:d:671748
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7301/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7301/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Knorr, Florian & Sanchez, Daniel Garcia & Schirmer, Johannes & Gazdzicki, Pawel & Friedrich, K.A., 2019. "Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 1-10.
    2. Amamou, A. & Kandidayeni, M. & Boulon, L. & Kelouwani, S., 2018. "Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 216(C), pages 21-30.
    3. Li, Linjun & Wang, Shixue & Yue, Like & Wang, Guozhuo, 2019. "Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode," Applied Energy, Elsevier, vol. 254(C).
    4. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Jiao, Kui, 2019. "Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model," Energy, Elsevier, vol. 183(C), pages 462-476.
    5. Ko, Johan & Ju, Hyunchul, 2012. "Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 94(C), pages 364-374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao, Xingxiao & Sun, Kai & Chen, Rui & Li, Qifeng & Liu, Huaiyu & Zhang, Wenzhe & Che, Zhizhao & Wang, Tianyou, 2024. "Effect of gas diffusion layer parameters on cold start of PEMFCs with metal foam flow field," Applied Energy, Elsevier, vol. 364(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
    2. Pan, Weitong & Li, Ping & Gan, Quanquan & Chen, Xueli & Wang, Fuchen & Dai, Gance, 2020. "Thermal stability analysis of cold start processes in PEM fuel cells," Applied Energy, Elsevier, vol. 261(C).
    3. Cao, Qiming & Min, Haitao & Sun, Weiyi & Zhao, Honghui & Yu, Yuanbin & Zhang, Zhaopu & Jiang, Junyu, 2024. "A method of combining active and passive strategies by genetic algorithm in multi-stage cold start of proton exchange membrane fuel cell," Energy, Elsevier, vol. 288(C).
    4. Zang, Linfeng & Hao, Liang & Zhu, Xiaojing, 2023. "Effect of the pore structure of cathode catalyst layer on the PEM fuel cell cold start process," Energy, Elsevier, vol. 271(C).
    5. Li, Linjun & Wang, Shixue & Yue, Like & Wang, Guozhuo, 2019. "Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode," Applied Energy, Elsevier, vol. 254(C).
    6. Yang, Liu & Cao, Chenxi & Gan, Quanquan & Pei, Hao & Zhang, Qi & Li, Ping, 2022. "Revealing failure modes and effect of catalyst layer properties for PEM fuel cell cold start using an agglomerate model," Applied Energy, Elsevier, vol. 312(C).
    7. Montaner Ríos, G. & Schirmer, J. & Gentner, C. & Kallo, J., 2020. "Efficient thermal management strategies for cold starts of a proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 279(C).
    8. Gießgen, Tom & Jahnke, Thomas, 2023. "Assisted cold start of a PEMFC with a thermochemical preheater: A numerical study," Applied Energy, Elsevier, vol. 331(C).
    9. Lin, Rui & Zhu, Yike & Ni, Meng & Jiang, Zhenghua & Lou, Diming & Han, Lihang & Zhong, Di, 2019. "Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start," Applied Energy, Elsevier, vol. 241(C), pages 420-432.
    10. Huo, Sen & Jiao, Kui & Park, Jae Wan, 2019. "On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell," Applied Energy, Elsevier, vol. 233, pages 776-788.
    11. Pengcheng Liu & Sichuan Xu, 2022. "Experimental Research on the Dynamic Characteristics and Voltage Uniformity of a PEMFC Stack under Subzero Temperatures," Energies, MDPI, vol. 15(9), pages 1-14, April.
    12. Zhao, Chen & Wang, Fei & Wu, Xiaoyu, 2024. "Analysis and review on air-cooled open cathode proton exchange membrane fuel cells: Bibliometric, environmental adaptation and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    13. Knorr, Florian & Sanchez, Daniel Garcia & Schirmer, Johannes & Gazdzicki, Pawel & Friedrich, K.A., 2019. "Methanol as antifreeze agent for cold start of automotive polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 1-10.
    14. Zhan, Zhigang & Yuan, Chong & Hu, Zhangrong & Wang, Hui & Sui, P.C. & Djilali, Ned & Pan, Mu, 2018. "Experimental study on different preheating methods for the cold-start of PEMFC stacks," Energy, Elsevier, vol. 162(C), pages 1029-1040.
    15. Yanbo Yang & Tiancai Ma & Boyu Du & Weikang Lin & Naiyuan Yao, 2021. "Investigation on the Operating Conditions of Proton Exchange Membrane Fuel Cell Based on Constant Voltage Cold Start Mode," Energies, MDPI, vol. 14(3), pages 1-10, January.
    16. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    17. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    18. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    19. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    20. Tao, Jianjian & Zhang, Yihan & Wei, Xuezhe & Jiang, Shangfeng & Dai, Haifeng, 2024. "Optimization of fast cold start strategy for PEM fuel cell stack," Applied Energy, Elsevier, vol. 362(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7301-:d:671748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.