Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.01.068
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ji, Changwei & Yang, Jinxin & Liu, Xiaolong & Wang, Shuofeng & Zhang, Bo & Wang, Du, 2016. "Enhancing the fuel economy and emissions performance of a gasoline engine-powered vehicle with idle elimination and hydrogen start," Applied Energy, Elsevier, vol. 182(C), pages 135-144.
- Wei, Haiqiao & Feng, Dengquan & Shu, Gequn & Pan, Mingzhang & Guo, Yubin & Gao, Dongzhi & Li, Wei, 2014. "Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine," Applied Energy, Elsevier, vol. 132(C), pages 317-324.
- Adnan, R. & Masjuki, H.H. & Mahlia, T.M.I., 2012. "Performance and emission analysis of hydrogen fueled compression ignition engine with variable water injection timing," Energy, Elsevier, vol. 43(1), pages 416-426.
- Talibi, Midhat & Hellier, Paul & Ladommatos, Nicos, 2017. "Combustion and exhaust emission characteristics, and in-cylinder gas composition, of hydrogen enriched biogas mixtures in a diesel engine," Energy, Elsevier, vol. 124(C), pages 397-412.
- Zhou, J.H. & Cheung, C.S. & Zhao, W.Z. & Leung, C.W., 2016. "Diesel–hydrogen dual-fuel combustion and its impact on unregulated gaseous emissions and particulate emissions under different engine loads and engine speeds," Energy, Elsevier, vol. 94(C), pages 110-123.
- Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Chen, Wei & Bani, Stephen, 2017. "The influence of injection strategy on mixture formation and combustion process in a direct injection natural gas rotary engine," Applied Energy, Elsevier, vol. 187(C), pages 663-674.
- Yadav, Vinod Singh & Soni, S.L. & Sharma, Dilip, 2014. "Engine performance of optimized hydrogen-fueled direct injection engine," Energy, Elsevier, vol. 65(C), pages 116-122.
- Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zareei, Javad & Rohani, Abbas & Mazari, Farhad & Mikkhailova, Maria Vladimirovna, 2021. "Numerical investigation of the effect of two-step injection (direct and port injection) of hydrogen blending and natural gas on engine performance and exhaust gas emissions," Energy, Elsevier, vol. 231(C).
- Gao, Jianbing & Tian, Guohong & Ma, Chaochen & Huang, Liyong & Xing, Shikai, 2021. "Simulation of the impacts on a direct hydrogen injection opposed rotary piston engine performance by the injection strategies and equivalence ratios," Renewable Energy, Elsevier, vol. 179(C), pages 1204-1216.
- Chen, Wei & Pan, Jianfeng & Liu, Yangxian & Fan, Baowei & Liu, Hongjun & Otchere, Peter, 2019. "Numerical investigation of direct injection stratified charge combustion in a natural gas-diesel rotary engine," Applied Energy, Elsevier, vol. 233, pages 453-467.
- Shi, Cheng & Ji, Changwei & Ge, Yunshan & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu, 2021. "Effects of split direct-injected hydrogen strategies on combustion and emissions performance of a small-scale rotary engine," Energy, Elsevier, vol. 215(PA).
- Liu, Chang & Zhang, Zhiyuan & Ren, Peirong & Wei, Yidi & Jia, Boru & Zuo, Zhengxing & Wang, Wei & Feng, Huihua, 2024. "Application of semi-direct fuel injection system to free piston engine generator for better performance: Simulation approach with validation results," Energy, Elsevier, vol. 298(C).
- Benim, Ali Cemal & Pfeiffelmann, Björn & Ocłoń, Paweł & Taler, Jan, 2019. "Computational investigation of a lifted hydrogen flame with LES and FGM," Energy, Elsevier, vol. 173(C), pages 1172-1181.
- Yuan, Chenheng & Liu, Yang & Han, Cuijie & He, Yituan, 2019. "An investigation of mixture formation characteristics of a free-piston gasoline engine with direct-injection," Energy, Elsevier, vol. 173(C), pages 626-636.
- Gao, Jianbing & Tian, Guohong & Jenner, Phil & Burgess, Max & Emhardt, Simon, 2020. "Preliminary explorations of the performance of a novel small scale opposed rotary piston engine," Energy, Elsevier, vol. 190(C).
- Adrian Irimescu & Bianca Maria Vaglieco & Simona Silvia Merola & Vasco Zollo & Raffaele De Marinis, 2023. "Conversion of a Small-Size Passenger Car to Hydrogen Fueling: Evaluating the Risk of Backfire and the Correlation to Fuel System Requirements through 0D/1D Simulation," Energies, MDPI, vol. 16(10), pages 1-13, May.
- Chen, Lin & Wei, Haiqiao & Chen, Ceyuan & Feng, Dengquan & Zhou, Lei & Pan, Jiaying, 2019. "Numerical investigations on the effects of turbulence intensity on knocking combustion in a downsized gasoline engine," Energy, Elsevier, vol. 166(C), pages 318-325.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
- Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
- Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
- Chintala, V. & Subramanian, K.A., 2017. "Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 138(C), pages 197-209.
- Meng, Hao & Ji, Changwei & Shen, Jianpu & Yang, Jinxin & Xin, Gu & Chang, Ke & Wang, Shuofeng, 2023. "Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 263(PB).
- Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.
- Imran, S. & Korakianitis, T. & Shaukat, R. & Farooq, M. & Condoor, S. & Jayaram, S., 2018. "Experimentally tested performance and emissions advantages of using natural-gas and hydrogen fuel mixture with diesel and rapeseed methyl ester as pilot fuels," Applied Energy, Elsevier, vol. 229(C), pages 1260-1268.
- Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
- Chintala, Venkateswarlu & Subramanian, K.A., 2017. "A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 472-491.
- Su, Teng & Ji, Changwei & Wang, Shuofeng & Shi, Lei & Yang, Jinxin & Cong, Xiaoyu, 2017. "Investigation on performance of a hydrogen-gasoline rotary engine at part load and lean conditions," Applied Energy, Elsevier, vol. 205(C), pages 683-691.
- Yilmaz, I.T. & Gumus, M., 2018. "Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine," Energy, Elsevier, vol. 142(C), pages 1104-1113.
- Chintala, Venkateswarlu & Subramanian, K.A., 2016. "CFD analysis on effect of localized in-cylinder temperature on nitric oxide (NO) emission in a compression ignition engine under hydrogen-diesel dual-fuel mode," Energy, Elsevier, vol. 116(P1), pages 470-488.
- Tehseen Johar & Chiu-Fan Hsieh, 2023. "Design Challenges in Hydrogen-Fueled Rotary Engine—A Review," Energies, MDPI, vol. 16(2), pages 1-22, January.
- Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
- Fu-Sheng Li & Guo-Xiu Li & Yan-Huan Jiang & Hong-Meng Li & Zuo-Yu Sun, 2017. "Study on the Effect of Flame Instability on the Flame Structural Characteristics of Hydrogen/Air Mixtures Based on the Fast Fourier Transform," Energies, MDPI, vol. 10(5), pages 1-16, May.
- Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
- Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).
- Muhssen, Hassan Sadah & Masuri, Siti Ujila & Sahari, Barkawi Bin & Hairuddin, Abdul Aziz, 2021. "Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics," Energy, Elsevier, vol. 216(C).
- Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
- Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Pan, Zhenhua & Bani, Stephen & Chen, Wei & He, Ren, 2017. "Combined effect of injection timing and injection angle on mixture formation and combustion process in a direct injection (DI) natural gas rotary engine," Energy, Elsevier, vol. 128(C), pages 519-530.
More about this item
Keywords
Hydrogen internal combustion engines; Symmetric dual injection; Spaced dual injection; Combustion and emission characteristics; Pre-ignition and backfire;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:147:y:2018:i:c:p:715-728. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.