IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v116y2016ip1p116-127.html
   My bibliography  Save this article

Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures

Author

Listed:
  • Sun, Zuo-Yu
  • Li, Guo-Xiu

Abstract

Taking the laminar spherical flames propagate within homogenous hydrogen-air mixture as the studied object, the effects of initial conditions (including equivalence ratio, initial pressure, and initial temperature) on propagation characteristics are systematically investigated. During propagation, global stretch rate monotonously declines towards convergence, it first rises then declines with the increase of equivalence ratio (φ) from 0.5 to 4.0 and the maximal value is attained at φ = 1.8. With the declines of global stretch rate, the propagation speed within lean mixtures first declines and then rises, but it monotonously rises within stoichiometric and rich mixtures. Markstein length is sensitive to equivalence ratio and initial pressure rather than initial temperature. Unstretched laminar burning velocity isn't monotonously changed with the variation of equivalence ratio but it monotonously verifies with the variation of initial thermodynamic condition. Owing to the wane of stretch effects, flame develops towards unstable, the nexus between critical flame radius of cellularity behaviours and initial conditions are analysed based upon hydrodynamic and thermal-diffusive effects. In addition, the critical Peclet number is observed linear to equivalence ratio but less sensitive to initial ambient conditions.

Suggested Citation

  • Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.
  • Handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:116-127
    DOI: 10.1016/j.energy.2016.09.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216313731
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.09.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Byung Chul & Park, June Sung & Ghoniem, Ahmed F., 2016. "Characteristics of outwardly propagating spherical flames of R134a(C2H2F4)/CH4/O2/N2 mixtures in a constant volume combustion chamber," Energy, Elsevier, vol. 95(C), pages 517-527.
    2. Catapano, F. & Di Iorio, S. & Magno, A. & Sementa, P. & Vaglieco, B.M., 2015. "A comprehensive analysis of the effect of ethanol, methane and methane-hydrogen blend on the combustion process in a PFI (port fuel injection) engine," Energy, Elsevier, vol. 88(C), pages 101-110.
    3. Nair, Aswathy & Velamati, Ratna Kishore & Kumar, Sudarshan, 2016. "Effect OF CO2/N2 dilution on laminar burning velocity of liquid petroleum gas-air mixtures at elevated temperatures," Energy, Elsevier, vol. 100(C), pages 145-153.
    4. de Persis, Stéphanie & Foucher, Fabrice & Pillier, Laure & Osorio, Vladimiro & Gökalp, Iskender, 2013. "Effects of O2 enrichment and CO2 dilution on laminar methane flames," Energy, Elsevier, vol. 55(C), pages 1055-1066.
    5. Almansoori, A. & Betancourt-Torcat, A., 2016. "Design of optimization model for a hydrogen supply chain under emission constraints - A case study of Germany," Energy, Elsevier, vol. 111(C), pages 414-429.
    6. Oh, Jeongseog & Noh, Dongsoon, 2012. "Laminar burning velocity of oxy-methane flames in atmospheric condition," Energy, Elsevier, vol. 45(1), pages 669-675.
    7. Orhan, Mehmet F. & Babu, Binish S., 2015. "Investigation of an integrated hydrogen production system based on nuclear and renewable energy sources: Comparative evaluation of hydrogen production options with a regenerative fuel cell system," Energy, Elsevier, vol. 88(C), pages 801-820.
    8. Fayaz, H. & Saidur, R. & Razali, N. & Anuar, F.S. & Saleman, A.R. & Islam, M.R., 2012. "An overview of hydrogen as a vehicle fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5511-5528.
    9. Zhang, Bo & Ji, Changwei & Wang, Shuofeng & Liu, Xiaolong, 2014. "Combustion and emissions characteristics of a spark-ignition engine fueled with hydrogen–methanol blends under lean and various loads conditions," Energy, Elsevier, vol. 74(C), pages 829-835.
    10. Wang, Xin & Zhang, Hongguang & Yao, Baofeng & Lei, Yan & Sun, Xiaona & Wang, Daojing & Ge, Yunshan, 2012. "Experimental study on factors affecting lean combustion limit of S.I engine fueled with compressed natural gas and hydrogen blends," Energy, Elsevier, vol. 38(1), pages 58-65.
    11. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Cong, Xiaoyu & Liu, Xiaolong, 2016. "Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine," Energy, Elsevier, vol. 96(C), pages 118-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miriam Reyes & Rosaura Sastre & Blanca Giménez & Clara Sesma, 2022. "Experimental, Kinetic Modeling and Morphologic Study of the Premixed Combustion of Hydrogen/Methane Mixtures," Energies, MDPI, vol. 15(10), pages 1-20, May.
    2. Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
    3. Sun, Z.Y. & LIU, Shao-Yan, 2022. "A comparative study on the turbulent explosion characteristics of syngas between CO-enriched and H2-enriched," Energy, Elsevier, vol. 241(C).
    4. Wang, Du & Ji, Changwei & Wang, Shuofeng & Yang, Jinxin & Tang, Chuanqi, 2019. "Experimental investigation on near wall ignited lean methane/hydrogen/air flame," Energy, Elsevier, vol. 168(C), pages 1094-1103.
    5. Wang, Du & Ji, Changwei & Wang, Shuofeng & Meng, Hao & Yang, Jinxin, 2019. "Chemical effects of CO2 dilution on CH4 and H2 spherical flame," Energy, Elsevier, vol. 185(C), pages 316-326.
    6. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effect of variable compression ratio and equivalence ratio on performance, combustion and emission of hydrogen port injection SI engine," Energy, Elsevier, vol. 239(PE).
    7. Meng, Hao & Ji, Changwei & Shen, Jianpu & Yang, Jinxin & Xin, Gu & Chang, Ke & Wang, Shuofeng, 2023. "Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 263(PB).
    8. Yang, Zhenzhong & Zhang, Fu & Wang, Lijun & Wang, Kaixin & Zhang, Donghui, 2018. "Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine," Energy, Elsevier, vol. 147(C), pages 715-728.
    9. Huang, Sheng & Zhang, Yu & Huang, Ronghua & Xu, Shijie & Ma, Yinjie & Wang, Zhaowen & Zhang, Xinhua, 2019. "Quantitative characterization of crack and cell's morphological evolution in premixed expanding spherical flames," Energy, Elsevier, vol. 171(C), pages 161-169.
    10. Fu-Sheng Li & Guo-Xiu Li & Yan-Huan Jiang & Hong-Meng Li & Zuo-Yu Sun, 2017. "Study on the Effect of Flame Instability on the Flame Structural Characteristics of Hydrogen/Air Mixtures Based on the Fast Fourier Transform," Energies, MDPI, vol. 10(5), pages 1-16, May.
    11. Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
    12. Fu-Sheng Li & Guo-Xiu Li & Zuo-Yu Sun, 2017. "Explosion Behaviour of 30% Hydrogen/70% Methane-Blended Fuels in a Weak Turbulent Environment," Energies, MDPI, vol. 10(7), pages 1-15, July.
    13. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effects of hydrogen assisted combustion of EBNOL IN SI engines under variable compression ratio and ignition timing," Energy, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
    2. Xiao, Peng & Lee, Chia-fon & Wu, Han & Liu, Fushui, 2020. "Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures," Renewable Energy, Elsevier, vol. 154(C), pages 209-222.
    3. Hu, Xianzhong & Yu, Qingbo, 2018. "Effect of the elevated initial temperature on the laminar flame speeds of oxy-methane mixtures," Energy, Elsevier, vol. 147(C), pages 876-883.
    4. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Cong, Xiaoyu & Liu, Xiaolong, 2016. "Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine," Energy, Elsevier, vol. 96(C), pages 118-126.
    5. Hu, Xianzhong & Yu, Qingbo & Liu, Junxiang & Sun, Nan, 2014. "Investigation of laminar flame speeds of CH4/O2/CO2 mixtures at ordinary pressure and kinetic simulation," Energy, Elsevier, vol. 70(C), pages 626-634.
    6. Oh, Jeongseog & Noh, Dongsoon & Ko, Changbok, 2013. "The effect of hydrogen addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace," Energy, Elsevier, vol. 62(C), pages 362-369.
    7. Gong, Changming & Li, Zhaohui & Li, Dong & Liu, Jiajun & Si, Xiankai & Yu, Jiawei & Huang, Wei & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical investigation of hydrogen addition effects on methanol-air mixtures combustion in premixed laminar flames under lean burn conditions," Renewable Energy, Elsevier, vol. 127(C), pages 56-63.
    8. Varghese, Robin John & Kishore, V. Ratna & Akram, M. & Yoon, Y. & Kumar, Sudarshan, 2017. "Burning velocities of DME(dimethyl ether)-air premixed flames at elevated temperatures," Energy, Elsevier, vol. 126(C), pages 34-41.
    9. Prasad, Rajesh Kumar & Agarwal, Avinash Kumar, 2021. "Development and comparative experimental investigations of laser plasma and spark plasma ignited hydrogen enriched compressed natural gas fueled engine," Energy, Elsevier, vol. 216(C).
    10. Enzo Galloni & Davide Lanni & Gustavo Fontana & Gabriele D’Antuono & Simone Stabile, 2022. "Performance Estimation of a Downsized SI Engine Running with Hydrogen," Energies, MDPI, vol. 15(13), pages 1-12, June.
    11. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Benim, Ali Cemal & Pfeiffelmann, Björn & Ocłoń, Paweł & Taler, Jan, 2019. "Computational investigation of a lifted hydrogen flame with LES and FGM," Energy, Elsevier, vol. 173(C), pages 1172-1181.
    13. Feng, Biao & Yang, Zhao & Zhai, Rui, 2017. "Experimental research on the concentration characteristics of R32 and R161′ combustion product HF," Energy, Elsevier, vol. 125(C), pages 671-680.
    14. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    15. Choi, Sun & Lee, Seungro & Kwon, Oh Chae, 2015. "Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures," Energy, Elsevier, vol. 85(C), pages 503-510.
    16. Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
    17. Duarte, Jorge & Amador, Germán & Garcia, Jesus & Fontalvo, Armando & Vasquez Padilla, Ricardo & Sanjuan, Marco & Gonzalez Quiroga, Arturo, 2014. "Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels," Energy, Elsevier, vol. 71(C), pages 137-147.
    18. Djouadi, Amel & Bentahar, Fatiha, 2016. "Combustion study of a spark-ignition engine from pressure cycles," Energy, Elsevier, vol. 101(C), pages 211-217.
    19. Su, Li-Wang & Li, Xiang-Rong & Sun, Zuo-Yu, 2013. "Flow chart of methanol in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 541-550.
    20. Rafaa Saaidia & Mohamed Ali Jemni & Mohamed Salah Abid, 2017. "Simulation and Empirical Studies of the Commercial SI Engine Performance and Its Emission Levels When Running on a CNG and Hydrogen Blend," Energies, MDPI, vol. 11(1), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:116:y:2016:i:p1:p:116-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.