IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v65y2014icp116-122.html
   My bibliography  Save this article

Engine performance of optimized hydrogen-fueled direct injection engine

Author

Listed:
  • Yadav, Vinod Singh
  • Soni, S.L.
  • Sharma, Dilip

Abstract

The world is presently confronted with the twin crisis of fossil fuel depletion and environmental degradation. Indiscriminate extraction and lavish consumption of fossil fuels have led to reduction in underground based carbon resources. The search for an alternative fuel, which promises a harmonious correlation with sustainable development, energy conservation, management, efficiency, and environmental preservation, has become highly pronounced in the present context. For the developing countries of the world, fuels of bio-origin can provide a feasible solution to the crisis.

Suggested Citation

  • Yadav, Vinod Singh & Soni, S.L. & Sharma, Dilip, 2014. "Engine performance of optimized hydrogen-fueled direct injection engine," Energy, Elsevier, vol. 65(C), pages 116-122.
  • Handle: RePEc:eee:energy:v:65:y:2014:i:c:p:116-122
    DOI: 10.1016/j.energy.2013.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213010645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saravanan, N. & Nagarajan, G. & Kalaiselvan, K.M. & Dhanasekaran, C., 2008. "An experimental investigation on hydrogen as a dual fuel for diesel engine system with exhaust gas recirculation technique," Renewable Energy, Elsevier, vol. 33(3), pages 422-427.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chintala, Venkateswarlu & Subramanian, K.A., 2016. "CFD analysis on effect of localized in-cylinder temperature on nitric oxide (NO) emission in a compression ignition engine under hydrogen-diesel dual-fuel mode," Energy, Elsevier, vol. 116(P1), pages 470-488.
    2. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    3. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    4. Rosha, Pali & Dhir, Amit & Mohapatra, Saroj Kumar, 2018. "Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3333-3349.
    5. Chintala, Venkateswarlu & Subramanian, K.A., 2017. "A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 472-491.
    6. Yang, Zhenzhong & Zhang, Fu & Wang, Lijun & Wang, Kaixin & Zhang, Donghui, 2018. "Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine," Energy, Elsevier, vol. 147(C), pages 715-728.
    7. Chintala, V. & Subramanian, K.A., 2017. "Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 138(C), pages 197-209.
    8. Yilmaz, I.T. & Gumus, M., 2018. "Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine," Energy, Elsevier, vol. 142(C), pages 1104-1113.
    9. Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
    10. Wenelska, Karolina & Michalkiewicz, Beata & Chen, Xuecheng & Mijowska, Ewa, 2014. "Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity," Energy, Elsevier, vol. 75(C), pages 549-554.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    2. Saravanan, N. & Nagarajan, G., 2009. "Performance and emission study in manifold hydrogen injection with diesel as an ignition source for different start of injection," Renewable Energy, Elsevier, vol. 34(1), pages 328-334.
    3. Namasivayam, A.M. & Korakianitis, T. & Crookes, R.J. & Bob-Manuel, K.D.H. & Olsen, J., 2010. "Biodiesel, emulsified biodiesel and dimethyl ether as pilot fuels for natural gas fuelled engines," Applied Energy, Elsevier, vol. 87(3), pages 769-778, March.
    4. George Mallouppas & Elias A. Yfantis & Charalambos Frantzis & Theodoros Zannis & Petros G. Savva, 2022. "The Effect of Hydrogen Addition on the Pollutant Emissions of a Marine Internal Combustion Engine Genset," Energies, MDPI, vol. 15(19), pages 1-13, September.
    5. Nageswara Rao Gangolu & Bala Rama Krishna Chunchu & Abshalomu Yallamati & Radha Krishna Gopidesi, 2022. "Assessment of diesel engine characteristics by using soybean oil as a biofuel," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7579-7592, June.
    6. Alrazen, Hayder A. & Abu Talib, A.R. & Adnan, R. & Ahmad, K.A., 2016. "A review of the effect of hydrogen addition on the performance and emissions of the compression – Ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 785-796.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:65:y:2014:i:c:p:116-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.