IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v132y2014icp317-324.html
   My bibliography  Save this article

Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine

Author

Listed:
  • Wei, Haiqiao
  • Feng, Dengquan
  • Shu, Gequn
  • Pan, Mingzhang
  • Guo, Yubin
  • Gao, Dongzhi
  • Li, Wei

Abstract

Currently, 2,5-dimethylfuran (DMF) has already been extensively studied as a novel potential gasoline substitute. With its improved reaction sequences, another main molecule transformed from fructose has also aroused worldwide interest, which is known as 2-methylfuran (MF). MF has similar energy density and knock suppression ability to DMF. However, little is known about its behavior in spark-ignition (SI) engines, especially when it is used as a gasoline additive. Therefore, focus was given on the combustion and emissions characteristics of 10% volume fraction 2-methylfuran gasoline blend fuel (M10) in this work, which was investigated experimentally in a single-cylinder four-stroke SI engine at various engine speeds (800–1800rpm in 200rpm intervals) and wide open throttle (WOT). The in-cylinder combustion process as well as engine performance of M10 were compared with gasoline and the same proportion ethanol gasoline blend fuel (E10) under gasoline maximum brake torque (MBT) spark timing and stoichiometric air-fuel ratio. Results of engine tests show that M10 produces relatively high in-cylinder peak pressure and temperature, which is mainly attributed to its consistently shorter combustion duration. Compared with engine performance of E10, the output torque and brake power increase slightly with less brake specific fuel consumption when M10 is used. Lower regulated gas emissions of hydrocarbons (HC) and carbon monoxide (CO) can be found for both E10 and M10 blend. In addition, more nitrogen oxides (NOX) emissions are generated from M10 due to its higher combustion temperature.

Suggested Citation

  • Wei, Haiqiao & Feng, Dengquan & Shu, Gequn & Pan, Mingzhang & Guo, Yubin & Gao, Dongzhi & Li, Wei, 2014. "Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine," Applied Energy, Elsevier, vol. 132(C), pages 317-324.
  • Handle: RePEc:eee:appene:v:132:y:2014:i:c:p:317-324
    DOI: 10.1016/j.apenergy.2014.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191400676X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sen, Asok K. & Zheng, Jianjun & Huang, Zuohua, 2011. "Dynamics of cycle-to-cycle variations in a natural gas direct-injection spark-ignition engine," Applied Energy, Elsevier, vol. 88(7), pages 2324-2334, July.
    2. Daniel, Ritchie & Xu, Hongming & Wang, Chongming & Richardson, Dave & Shuai, Shijin, 2012. "Combustion performance of 2,5-dimethylfuran blends using dual-injection compared to direct-injection in a SI engine," Applied Energy, Elsevier, vol. 98(C), pages 59-68.
    3. Rakopoulos, C.D. & Antonopoulos, K.A. & Rakopoulos, D.C., 2007. "Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blends," Energy, Elsevier, vol. 32(10), pages 1791-1808.
    4. Heyne, Stefan & Harvey, Simon, 2013. "Assessment of the energy and economic performance of second generation biofuel production processes using energy market scenarios," Applied Energy, Elsevier, vol. 101(C), pages 203-212.
    5. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    6. Yuriy Román-Leshkov & Christopher J. Barrett & Zhen Y. Liu & James A. Dumesic, 2007. "Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates," Nature, Nature, vol. 447(7147), pages 982-985, June.
    7. Navarro, Emilio & Leo, Teresa J. & Corral, Roberto, 2013. "CO2 emissions from a spark ignition engine operating on natural gas–hydrogen blends (HCNG)," Applied Energy, Elsevier, vol. 101(C), pages 112-120.
    8. Wu, Xuesong & Daniel, Ritchie & Tian, Guohong & Xu, Hongming & Huang, Zuohua & Richardson, Dave, 2011. "Dual-injection: The flexible, bi-fuel concept for spark-ignition engines fuelled with various gasoline and biofuel blends," Applied Energy, Elsevier, vol. 88(7), pages 2305-2314, July.
    9. Costagliola, M.A. & De Simio, L. & Iannaccone, S. & Prati, M.V., 2013. "Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends," Applied Energy, Elsevier, vol. 111(C), pages 1162-1171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
    2. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    3. Yang, Zhenzhong & Zhang, Fu & Wang, Lijun & Wang, Kaixin & Zhang, Donghui, 2018. "Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine," Energy, Elsevier, vol. 147(C), pages 715-728.
    4. Feng, Dengquan & Wei, Haiqiao & Pan, Mingzhang & Zhou, Lei & Hua, Jianxiong, 2018. "Combustion performance of dual-injection using n-butanol direct-injection and gasoline port fuel-injection in a SI engine," Energy, Elsevier, vol. 160(C), pages 573-581.
    5. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Li, Jing & Ye, Lan & Gong, Shiqi & Deng, Xiaorong & Wang, Shuo & Liu, Rui & Yang, Wenming, 2024. "Review on the combustion progress and engine application of tailor-made fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Chen, Lin & Wei, Haiqiao & Chen, Ceyuan & Feng, Dengquan & Zhou, Lei & Pan, Jiaying, 2019. "Numerical investigations on the effects of turbulence intensity on knocking combustion in a downsized gasoline engine," Energy, Elsevier, vol. 166(C), pages 318-325.
    9. Puneet Verma & Svetlana Stevanovic & Ali Zare & Gaurav Dwivedi & Thuy Chu Van & Morgan Davidson & Thomas Rainey & Richard J. Brown & Zoran D. Ristovski, 2019. "An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
    2. Daniel, Ritchie & Xu, Hongming & Wang, Chongming & Richardson, Dave & Shuai, Shijin, 2013. "Gaseous and particulate matter emissions of biofuel blends in dual-injection compared to direct-injection and port injection," Applied Energy, Elsevier, vol. 105(C), pages 252-261.
    3. Ma, Xiao & Xu, Hongming & Jiang, Changzhao & Shuai, Shijin, 2014. "Ultra-high speed imaging and OH-LIF study of DMF and MF combustion in a DISI optical engine," Applied Energy, Elsevier, vol. 122(C), pages 247-260.
    4. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    5. Haifeng Liu & Xichang Wang & Diping Zhang & Fang Dong & Xinlu Liu & Yong Yang & Haozhong Huang & Yang Wang & Qianlong Wang & Zunqing Zheng, 2019. "Investigation on Blending Effects of Gasoline Fuel with N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle," Energies, MDPI, vol. 12(10), pages 1-21, May.
    6. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    7. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Qian, Yong & Zhu, Lifeng & Wang, Yue & Lu, Xingcai, 2015. "Recent progress in the development of biofuel 2,5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 633-646.
    9. Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng & Xu, Jia, 2012. "Experimental study of n-butanol addition on performance and emissions with diesel low temperature combustion," Energy, Elsevier, vol. 47(1), pages 515-521.
    10. Feng, Dengquan & Wei, Haiqiao & Pan, Mingzhang & Zhou, Lei & Hua, Jianxiong, 2018. "Combustion performance of dual-injection using n-butanol direct-injection and gasoline port fuel-injection in a SI engine," Energy, Elsevier, vol. 160(C), pages 573-581.
    11. Cinzia Tornatore & Luca Marchitto & Maria Antonietta Costagliola & Gerardo Valentino, 2019. "Experimental Comparative Study on Performance and Emissions of E85 Adopting Different Injection Approaches in a Turbocharged PFI SI Engine," Energies, MDPI, vol. 12(8), pages 1-15, April.
    12. Costagliola, M.A. & De Simio, L. & Iannaccone, S. & Prati, M.V., 2013. "Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends," Applied Energy, Elsevier, vol. 111(C), pages 1162-1171.
    13. Ge, Yuntian & Li, Lin, 2018. "System-level energy consumption modeling and optimization for cellulosic biofuel production," Applied Energy, Elsevier, vol. 226(C), pages 935-946.
    14. Cha-Lee Myung & Juwon Kim & Wonwook Jang & Dongyoung Jin & Simsoo Park & Jeongmin Lee, 2015. "Nanoparticle Filtration Characteristics of Advanced Metal Foam Media for a Spark Ignition Direct Injection Engine in Steady Engine Operating Conditions and Vehicle Test Modes," Energies, MDPI, vol. 8(3), pages 1-17, March.
    15. Daniel, Ritchie & Xu, Hongming & Wang, Chongming & Richardson, Dave & Shuai, Shijin, 2012. "Combustion performance of 2,5-dimethylfuran blends using dual-injection compared to direct-injection in a SI engine," Applied Energy, Elsevier, vol. 98(C), pages 59-68.
    16. Clairotte, M. & Adam, T.W. & Zardini, A.A. & Manfredi, U. & Martini, G. & Krasenbrink, A. & Vicet, A. & Tournié, E. & Astorga, C., 2013. "Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline," Applied Energy, Elsevier, vol. 102(C), pages 44-54.
    17. Yang, Li-Ping & Song, En-Zhe & Ding, Shun-Liang & Brown, Richard J. & Marwan, Norbert & Ma, Xiu-Zhen, 2016. "Analysis of the dynamic characteristics of combustion instabilities in a pre-mixed lean-burn natural gas engine," Applied Energy, Elsevier, vol. 183(C), pages 746-759.
    18. Qian, Yong & Wang, Xiaole & Zhu, Lifeng & Lu, Xingcai, 2015. "Experimental studies on combustion and emissions of RCCI (reactivity controlled compression ignition) with gasoline/n-heptane and ethanol/n-heptane as fuels," Energy, Elsevier, vol. 88(C), pages 584-594.
    19. Feng, Renhua & Fu, Jianqin & Yang, Jing & Wang, Yi & Li, Yangtao & Deng, Banglin & Liu, Jingping & Zhang, Daming, 2015. "Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend," Renewable Energy, Elsevier, vol. 81(C), pages 113-122.
    20. Navarro, Emilio & Leo, Teresa J. & Corral, Roberto, 2013. "CO2 emissions from a spark ignition engine operating on natural gas–hydrogen blends (HCNG)," Applied Energy, Elsevier, vol. 101(C), pages 112-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:132:y:2014:i:c:p:317-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.