IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v126y2017icp564-572.html
   My bibliography  Save this article

Model predictive control with finite control set for variable-speed wind turbines

Author

Listed:
  • Song, Dongran
  • Yang, Jian
  • Dong, Mi
  • Joo, Young Hoon

Abstract

The existing model predictive control (MPC) algorithm for variable-speed wind turbines (WTs) is using continuous control set and solved by a quadratic programming method. Its main drawbacks are the heavily computational burden and the difficulty to implement. This paper introduces an alternative MPC method by using finite control set, which is used in controlling WTs at the first attempt. To do this, first of all, the WT's nonlinear model is linearized with information provided by a non-standard extended Kalman filter. Secondly, a discrete-time linear model of the system is used to predict the future value of the interested state variable for possible control sets. In view of the fact that control objectives are different within two operation zones partitioned by wind speed, two quality functions are predefined. One quality function evaluates the optimal generator speed tracking error together with the penalty of torque actuator action at below rated wind speed, while the other evaluates the rated generator speed tracking error and the penalty of pitch actuator action at above rated wind speed. Then, the corresponding control set which minimizes the quality function is selected. Finally, some simulation results are demonstrated to visualize the effectiveness and feasibility of the proposed method.

Suggested Citation

  • Song, Dongran & Yang, Jian & Dong, Mi & Joo, Young Hoon, 2017. "Model predictive control with finite control set for variable-speed wind turbines," Energy, Elsevier, vol. 126(C), pages 564-572.
  • Handle: RePEc:eee:energy:v:126:y:2017:i:c:p:564-572
    DOI: 10.1016/j.energy.2017.02.149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217303328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jena, Debashisha & Rajendran, Saravanakumar, 2015. "A review of estimation of effective wind speed based control of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1046-1062.
    2. Yin, Xiu-xing & Lin, Yong-gang & Li, Wei & Gu, Ya-jing & Liu, Hong-wei & Lei, Peng-fei, 2015. "A novel fuzzy integral sliding mode current control strategy for maximizing wind power extraction and eliminating voltage harmonics," Energy, Elsevier, vol. 85(C), pages 677-686.
    3. Song, Dongran & Yang, Jian & Cai, Zili & Dong, Mi & Su, Mei & Wang, Yinghua, 2017. "Wind estimation with a non-standard extended Kalman filter and its application on maximum power extraction for variable speed wind turbines," Applied Energy, Elsevier, vol. 190(C), pages 670-685.
    4. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    5. Yang, Jian & Song, Dongran & Dong, Mi & Chen, Sifan & Zou, Libing & Guerrero, Josep M., 2016. "Comparative studies on control systems for a two-blade variable-speed wind turbine with a speed exclusion zone," Energy, Elsevier, vol. 109(C), pages 294-309.
    6. Lasheen, Ahmed & Saad, Mohamed S. & Emara, Hassan M. & Elshafei, Abdel Latif, 2017. "Continuous-time tube-based explicit model predictive control for collective pitching of wind turbines," Energy, Elsevier, vol. 118(C), pages 1222-1233.
    7. Fantino, Roberto & Solsona, Jorge & Busada, Claudio, 2016. "Nonlinear observer-based control for PMSG wind turbine," Energy, Elsevier, vol. 113(C), pages 248-257.
    8. Jain, Achin & Schildbach, Georg & Fagiano, Lorenzo & Morari, Manfred, 2015. "On the design and tuning of linear model predictive control for wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 664-673.
    9. Zuluaga, Carlos D. & Álvarez, Mauricio A. & Giraldo, Eduardo, 2015. "Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison," Applied Energy, Elsevier, vol. 156(C), pages 321-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Dongran & Yang, Yinggang & Zheng, Songyue & Tang, Weiyi & Yang, Jian & Su, Mei & Yang, Xuebing & Joo, Young Hoon, 2019. "Capacity factor estimation of variable-speed wind turbines considering the coupled influence of the QN-curve and the air density," Energy, Elsevier, vol. 183(C), pages 1049-1060.
    2. Song, Dongran & Fan, Xinyu & Yang, Jian & Liu, Anfeng & Chen, Sifan & Joo, Young Hoon, 2018. "Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method," Applied Energy, Elsevier, vol. 224(C), pages 267-279.
    3. Lei, Hang & Su, Jie & Bao, Yan & Chen, Yaoran & Han, Zhaolong & Zhou, Dai, 2019. "Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms," Energy, Elsevier, vol. 166(C), pages 471-489.
    4. Longfu Luo & Xiaofeng Zhang & Dongran Song & Weiyi Tang & Jian Yang & Li Li & Xiaoyu Tian & Wu Wen, 2018. "Optimal Design of Rated Wind Speed and Rotor Radius to Minimizing the Cost of Energy for Offshore Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-17, October.
    5. Gianluca Pepe & Federica Mezzani & Antonio Carcaterra & Luca Cedola & Franco Rispoli, 2020. "Variational Control Approach to Energy Extraction from a Fluid Flow," Energies, MDPI, vol. 13(18), pages 1-20, September.
    6. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    7. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    8. Song, Dongran & Yang, Jian & Su, Mei & Liu, Anfeng & Cai, Zili & Liu, Yao & Joo, Young Hoon, 2017. "A novel wind speed estimator-integrated pitch control method for wind turbines with global-power regulation," Energy, Elsevier, vol. 138(C), pages 816-830.
    9. Hui, Jiuwu & Yuan, Jingqi, 2022. "Load following control of a pressurized water reactor via finite-time super-twisting sliding mode and extended state observer techniques," Energy, Elsevier, vol. 241(C).
    10. Jinghan Cui & Su Liu & Jinfeng Liu & Xiangjie Liu, 2018. "A Comparative Study of MPC and Economic MPC of Wind Energy Conversion Systems," Energies, MDPI, vol. 11(11), pages 1-23, November.
    11. Pires, Thiago S. & Cruz, Manuel E. & Colaço, Marcelo J. & Alves, Marco A.C., 2018. "Application of nonlinear multivariable model predictive control to transient operation of a gas turbine and NOX emissions reduction," Energy, Elsevier, vol. 149(C), pages 341-353.
    12. Janusz Baran & Andrzej Jąderko, 2020. "An MPPT Control of a PMSG-Based WECS with Disturbance Compensation and Wind Speed Estimation," Energies, MDPI, vol. 13(23), pages 1-20, December.
    13. Mi Dong & Xiaoyu Tian & Li Li & Dongran Song & Lina Wang & Miao Zhao, 2018. "Model-Based Current Sharing Approach for DCM Interleaved Flyback Micro-Inverter," Energies, MDPI, vol. 11(7), pages 1-21, June.
    14. Lasheen, Ahmed & Saad, Mohamed S. & Emara, Hassan M. & Elshafei, Abdel Latif, 2019. "Tube-based explicit model predictive output-feedback controller for collective pitching of wind turbines," Renewable Energy, Elsevier, vol. 131(C), pages 549-562.
    15. Li, Qing’an & Xu, Jianzhong & Kamada, Yasunari & Takao, Maeda & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2020. "Experimental investigations of airfoil surface flow of a horizontal axis wind turbine with LDV measurements," Energy, Elsevier, vol. 191(C).
    16. Moodi, Hoda & Bustan, Danyal, 2019. "Wind turbine control using T-S systems with nonlinear consequent parts," Energy, Elsevier, vol. 172(C), pages 922-931.
    17. Kaman Thapa Magar & Mark Balas & Susan Frost & Nailu Li, 2017. "Adaptive State Feedback—Theory and Application for Wind Turbine Control," Energies, MDPI, vol. 10(12), pages 1-15, December.
    18. Tingrui Liu & Kang Zhao & Changle Sun & Jiahao Jia & Guifang Liu, 2020. "Real-Time Flow Control of Blade Section Using a Hydraulic Transmission System Based on an H-Inf Controller with LMI Design," Energies, MDPI, vol. 13(19), pages 1-16, September.
    19. Wakui, Tetsuya & Yoshimura, Motoki & Yokoyama, Ryohei, 2017. "Multiple-feedback control of power output and platform pitching motion for a floating offshore wind turbine-generator system," Energy, Elsevier, vol. 141(C), pages 563-578.
    20. Mi Dong & Li Li & Lina Wang & Dongran Song & Zhangjie Liu & Xiaoyu Tian & Zhengguo Li & Yinghua Wang, 2018. "A Distributed Secondary Control Algorithm for Automatic Generation Control Considering EDP and Automatic Voltage Control in an AC Microgrid," Energies, MDPI, vol. 11(4), pages 1-18, April.
    21. Yao Liu & Lin Guan & Fang Guo & Jianping Zheng & Jianfu Chen & Chao Liu & Josep M. Guerrero, 2019. "A Reactive Power-Voltage Control Strategy of an AC Microgrid Based on Adaptive Virtual Impedance," Energies, MDPI, vol. 12(16), pages 1-15, August.
    22. Masood, Nahid-Al- & Mahmud, Sajjad Uddin & Ansary, Md Nazmuddoha & Deeba, Shohana Rahman, 2022. "Improvement of system strength under high wind penetration: A techno-economic assessment using synchronous condenser and SVC," Energy, Elsevier, vol. 246(C).
    23. Xiaobing Kong & Lele Ma & Xiangjie Liu & Mohamed Abdelkarim Abdelbaky & Qian Wu, 2020. "Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions," Energies, MDPI, vol. 13(1), pages 1-21, January.
    24. Jingrong Yu & Limin Deng & Dongran Song & Maolin Pei, 2019. "Wide Bandwidth Control for Multi-Parallel Grid-Connected Inverters with Harmonic Compensation," Energies, MDPI, vol. 12(3), pages 1-22, February.
    25. Song, Dongran & Liu, Junbo & Yang, Yinggang & Yang, Jian & Su, Mei & Wang, Yun & Gui, Ning & Yang, Xuebing & Huang, Lingxiang & Hoon Joo, Young, 2021. "Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm," Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Dongran & Yang, Jian & Su, Mei & Liu, Anfeng & Cai, Zili & Liu, Yao & Joo, Young Hoon, 2017. "A novel wind speed estimator-integrated pitch control method for wind turbines with global-power regulation," Energy, Elsevier, vol. 138(C), pages 816-830.
    2. Song, Dongran & Yang, Jian & Cai, Zili & Dong, Mi & Su, Mei & Wang, Yinghua, 2017. "Wind estimation with a non-standard extended Kalman filter and its application on maximum power extraction for variable speed wind turbines," Applied Energy, Elsevier, vol. 190(C), pages 670-685.
    3. Barambones, Oscar & Cortajarena, Jose A. & Calvo, Isidro & Gonzalez de Durana, Jose M. & Alkorta, Patxi & Karami-Mollaee, A., 2019. "Variable speed wind turbine control scheme using a robust wind torque estimation," Renewable Energy, Elsevier, vol. 133(C), pages 354-366.
    4. Dongran Song & Jian Yang & Mei Su & Anfeng Liu & Yao Liu & Young Hoon Joo, 2017. "A Comparison Study between Two MPPT Control Methods for a Large Variable-Speed Wind Turbine under Different Wind Speed Characteristics," Energies, MDPI, vol. 10(5), pages 1-18, May.
    5. Lasheen, Ahmed & Saad, Mohamed S. & Emara, Hassan M. & Elshafei, Abdel Latif, 2019. "Tube-based explicit model predictive output-feedback controller for collective pitching of wind turbines," Renewable Energy, Elsevier, vol. 131(C), pages 549-562.
    6. Karabacak, Murat, 2019. "A new perturb and observe based higher order sliding mode MPPT control of wind turbines eliminating the rotor inertial effect," Renewable Energy, Elsevier, vol. 133(C), pages 807-827.
    7. Zhou, Yilin & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2022. "Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Golnary, Farshad & Moradi, Hamed, 2018. "Design and comparison of quasi continuous sliding mode control with feedback linearization for a large scale wind turbine with wind speed estimation," Renewable Energy, Elsevier, vol. 127(C), pages 495-508.
    9. M. A. Hannan & Ali Q. Al-Shetwi & M. S. Mollik & Pin Jern Ker & M. Mannan & M. Mansor & Hussein M. K. Al-Masri & T. M. Indra Mahlia, 2023. "Wind Energy Conversions, Controls, and Applications: A Review for Sustainable Technologies and Directions," Sustainability, MDPI, vol. 15(5), pages 1-30, February.
    10. Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.
    11. Hamed Habibi & Hamed Rahimi Nohooji & Ian Howard & Silvio Simani, 2019. "Fault-Tolerant Neuro Adaptive Constrained Control of Wind Turbines for Power Regulation with Uncertain Wind Speed Variation," Energies, MDPI, vol. 12(24), pages 1-33, December.
    12. Song, Dongran & Fan, Xinyu & Yang, Jian & Liu, Anfeng & Chen, Sifan & Joo, Young Hoon, 2018. "Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method," Applied Energy, Elsevier, vol. 224(C), pages 267-279.
    13. Jin, Yuqing & Ju, Ping & Rehtanz, Christian & Wu, Feng & Pan, Xueping, 2018. "Equivalent modeling of wind energy conversion considering overall effect of pitch angle controllers in wind farm," Applied Energy, Elsevier, vol. 222(C), pages 485-496.
    14. Govind, Bala, 2017. "Increasing the operational capability of a horizontal axis wind turbine by its integration with a vertical axis wind turbine," Applied Energy, Elsevier, vol. 199(C), pages 479-494.
    15. Jinghan Cui & Su Liu & Jinfeng Liu & Xiangjie Liu, 2018. "A Comparative Study of MPC and Economic MPC of Wind Energy Conversion Systems," Energies, MDPI, vol. 11(11), pages 1-23, November.
    16. Ganesh Mayilsamy & Kumarasamy Palanimuthu & Raghul Venkateswaran & Ruban Periyanayagam Antonysamy & Seong Ryong Lee & Dongran Song & Young Hoon Joo, 2023. "A Review of State Estimation Techniques for Grid-Connected PMSG-Based Wind Turbine Systems," Energies, MDPI, vol. 16(2), pages 1-27, January.
    17. Xiangjie Liu & Le Feng & Xiaobing Kong, 2022. "A Comparative Study of Robust MPC and Stochastic MPC of Wind Power Generation System," Energies, MDPI, vol. 15(13), pages 1-22, June.
    18. Yang, Bo & Yu, Tao & Shu, Hongchun & Zhang, Yuming & Chen, Jian & Sang, Yiyan & Jiang, Lin, 2018. "Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine," Renewable Energy, Elsevier, vol. 119(C), pages 577-589.
    19. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    20. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:126:y:2017:i:c:p:564-572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.