IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4814-d853139.html
   My bibliography  Save this article

A Comparative Study of Robust MPC and Stochastic MPC of Wind Power Generation System

Author

Listed:
  • Xiangjie Liu

    (The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Le Feng

    (The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

  • Xiaobing Kong

    (The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China)

Abstract

In this paper, a complete comparison analysis of two advanced control algorithms, namely robust model predictive control (MPC) and stochastic MPC, is performed in order to optimize the operation of a wind power generation system (WPGS). The power maximization often conflicts with the mechanical load experienced by the turbine in the full-load region (i.e., the higher the power extracted, the higher the load) under the wind speed disturbance, thereby leading to high maintenance cost resulting from the fatigue damage. Thus, a typical 5 MW wind turbine operating in a high-speed region is considered to guarantee system security and economy. The robust MPC is designed by utilizing the min–max framework to track steady-state optimum operating reference trajectory with the deterministic constraint of output power, while the stochastic MPC is constructed by incorporating the invariant set theory to also ensure the system security subjecting to the probabilistic constraint of output power. The relation between the constraints and the implications on optimal performance are also studied. Comprehensive simulations on a mechanism model and FAST simulator are carried out to demonstrate the validation of the two control methods under various scenarios. It is discovered that when wind speed in the near future can be predicted and utilized in controller design, the stochastic MPC can effectively reduce the maintenance cost by suppressing the constraint violation rate compared to robust MPC with a similar energy utilization due to the incorporation of the stochastic characteristics of wind speed.

Suggested Citation

  • Xiangjie Liu & Le Feng & Xiaobing Kong, 2022. "A Comparative Study of Robust MPC and Stochastic MPC of Wind Power Generation System," Energies, MDPI, vol. 15(13), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4814-:d:853139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4814/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4814/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diego Calabrese & Gioacchino Tricarico & Elia Brescia & Giuseppe Leonardo Cascella & Vito Giuseppe Monopoli & Francesco Cupertino, 2020. "Variable Structure Control of a Small Ducted Wind Turbine in the Whole Wind Speed Range Using a Luenberger Observer," Energies, MDPI, vol. 13(18), pages 1-23, September.
    2. Jinghan Cui & Su Liu & Jinfeng Liu & Xiangjie Liu, 2018. "A Comparative Study of MPC and Economic MPC of Wind Energy Conversion Systems," Energies, MDPI, vol. 11(11), pages 1-23, November.
    3. Kim, Dae-Young & Kim, Yeon-Hee & Kim, Bum-Suk, 2021. "Changes in wind turbine power characteristics and annual energy production due to atmospheric stability, turbulence intensity, and wind shear," Energy, Elsevier, vol. 214(C).
    4. Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Jiang, Di, 2020. "Design and implementation of partial offline fuzzy model-predictive pitch controller for large-scale wind-turbines," Renewable Energy, Elsevier, vol. 145(C), pages 981-996.
    5. Moradi, Hamed & Vossoughi, Gholamreza, 2015. "Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers," Energy, Elsevier, vol. 90(P2), pages 1508-1521.
    6. Xiaobing Kong & Lele Ma & Xiangjie Liu & Mohamed Abdelkarim Abdelbaky & Qian Wu, 2020. "Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions," Energies, MDPI, vol. 13(1), pages 1-21, January.
    7. Lasheen, Ahmed & Saad, Mohamed S. & Emara, Hassan M. & Elshafei, Abdel Latif, 2017. "Continuous-time tube-based explicit model predictive control for collective pitching of wind turbines," Energy, Elsevier, vol. 118(C), pages 1222-1233.
    8. Bohao Sun & Yong Tang & Lin Ye & Chaoyu Chen & Cihang Zhang & Wuzhi Zhong, 2018. "A Frequency Control Strategy Considering Large Scale Wind Power Cluster Integration Based on Distributed Model Predictive Control," Energies, MDPI, vol. 11(6), pages 1-19, June.
    9. Aitor Saenz-Aguirre & Ekaitz Zulueta & Unai Fernandez-Gamiz & Javier Lozano & Jose Manuel Lopez-Guede, 2019. "Artificial Neural Network Based Reinforcement Learning for Wind Turbine Yaw Control," Energies, MDPI, vol. 12(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amina Mseddi & Omar Naifar & Mohamed Rhaima & Lassaad Mchiri & Abdellatif Ben Makhlouf, 2023. "Robust Control for Torque Minimization in Wind Hybrid Generators: An H ∞ Approach," Mathematics, MDPI, vol. 11(16), pages 1-23, August.
    2. Velarde, Pablo & Gallego, Antonio J. & Bordons, Carlos & Camacho, Eduardo F., 2023. "Scenario-based model predictive control for energy scheduling in a parabolic trough concentrating solar plant with thermal storage," Renewable Energy, Elsevier, vol. 206(C), pages 1228-1238.
    3. Dongsen Li & Kang Qian & Ciwei Gao & Yiyue Xu & Qiang Xing & Zhangfan Wang, 2024. "Research on Electric Hydrogen Hybrid Storage Operation Strategy for Wind Power Fluctuation Suppression," Energies, MDPI, vol. 17(20), pages 1-15, October.
    4. Minan Tang & Wenjuan Wang & Jiandong Qiu & Detao Li & Linyuan Lei, 2022. "Active Power Cooperative Control for Wind Power Clusters with Multiple Temporal and Spatial Scales," Energies, MDPI, vol. 15(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Xiaobing & Ma, Lele & Wang, Ce & Guo, Shifan & Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Lee, Kwang Y., 2022. "Large-scale wind farm control using distributed economic model predictive scheme," Renewable Energy, Elsevier, vol. 181(C), pages 581-591.
    2. Song, Dongran & Yang, Jian & Su, Mei & Liu, Anfeng & Cai, Zili & Liu, Yao & Joo, Young Hoon, 2017. "A novel wind speed estimator-integrated pitch control method for wind turbines with global-power regulation," Energy, Elsevier, vol. 138(C), pages 816-830.
    3. Abdoos, Ali Akbar & Abdoos, Hatef & Kazemitabar, Javad & Mobashsher, Mohammad Mehdi & Khaloo, Hooman, 2023. "An intelligent hybrid method based on Monte Carlo simulation for short-term probabilistic wind power prediction," Energy, Elsevier, vol. 278(PA).
    4. Song, Dongran & Yang, Jian & Dong, Mi & Joo, Young Hoon, 2017. "Model predictive control with finite control set for variable-speed wind turbines," Energy, Elsevier, vol. 126(C), pages 564-572.
    5. Jia, Chengzhen & Wang, Lingmei & Meng, Enlong & Chen, Liming & Liu, Yushan & Jia, Wenqiang & Bao, Yutao & Liu, Zhenguo, 2021. "Combining LIDAR and LADRC for intelligent pitch control of wind turbines," Renewable Energy, Elsevier, vol. 169(C), pages 1091-1105.
    6. José Antonio Cortajarena & Oscar Barambones & Patxi Alkorta & Jon Cortajarena, 2021. "Grid Frequency and Amplitude Control Using DFIG Wind Turbines in a Smart Grid," Mathematics, MDPI, vol. 9(2), pages 1-18, January.
    7. Padullaparthi, Venkata Ramakrishna & Nagarathinam, Srinarayana & Vasan, Arunchandar & Menon, Vishnu & Sudarsanam, Depak, 2022. "FALCON- FArm Level CONtrol for wind turbines using multi-agent deep reinforcement learning," Renewable Energy, Elsevier, vol. 181(C), pages 445-456.
    8. Jinghan Cui & Su Liu & Jinfeng Liu & Xiangjie Liu, 2018. "A Comparative Study of MPC and Economic MPC of Wind Energy Conversion Systems," Energies, MDPI, vol. 11(11), pages 1-23, November.
    9. Wang, Jianing & Zhu, Hongqiu & Zhang, Yingjie & Cheng, Fei & Zhou, Can, 2023. "A novel prediction model for wind power based on improved long short-term memory neural network," Energy, Elsevier, vol. 265(C).
    10. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
    11. Xu, Zongyuan & Gao, Xiaoxia & Zhang, Huanqiang & Lv, Tao & Han, Zhonghe & Zhu, Xiaoxun & Wang, Yu, 2023. "Analysis of the anisotropy aerodynamic characteristics of downstream wind turbine considering the 3D wake expansion based on coupling method," Energy, Elsevier, vol. 263(PD).
    12. Afef Fekih & Saleh Mobayen & Chih-Chiang Chen, 2021. "Adaptive Robust Fault-Tolerant Control Design for Wind Turbines Subject to Pitch Actuator Faults," Energies, MDPI, vol. 14(6), pages 1-13, March.
    13. Minh Tri Nguyen & Tri Dung Dang & Kyoung Kwan Ahn, 2019. "Application of Electro-Hydraulic Actuator System to Control Continuously Variable Transmission in Wind Energy Converter," Energies, MDPI, vol. 12(13), pages 1-19, June.
    14. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    15. Mseddi, Amina & Le Ballois, Sandrine & Aloui, Helmi & Vido, Lionel, 2019. "Robust control of a wind conversion system based on a hybrid excitation synchronous generator: A comparison between H∞ and CRONE controllers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 453-476.
    16. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    17. Geon Hwa Ryu & Young-Gon Kim & Sung Jo Kwak & Man Soo Choi & Moon-Seon Jeong & Chae-Joo Moon, 2022. "Atmospheric Stability Effects on Offshore and Coastal Wind Resource Characteristics in South Korea for Developing Offshore Wind Farms," Energies, MDPI, vol. 15(4), pages 1-23, February.
    18. Yanwei Jing & Hexu Sun & Lei Zhang & Tieling Zhang, 2017. "Variable Speed Control of Wind Turbines Based on the Quasi-Continuous High-Order Sliding Mode Method," Energies, MDPI, vol. 10(10), pages 1-21, October.
    19. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    20. Stefano Dettori & Alessandro Maddaloni & Filippo Galli & Valentina Colla & Federico Bucciarelli & Damaso Checcacci & Annamaria Signorini, 2021. "Steam Turbine Rotor Stress Control through Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(13), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4814-:d:853139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.