IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p571-d205198.html
   My bibliography  Save this article

Wide Bandwidth Control for Multi-Parallel Grid-Connected Inverters with Harmonic Compensation

Author

Listed:
  • Jingrong Yu

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Limin Deng

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Dongran Song

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Maolin Pei

    (Jiangxi Electric Power Research Institute, Nanchang 330096, China)

Abstract

This paper proposes a virtual impedance-based bandwidth control method for multi-parallel harmonic-compensation grid-connected inverters (HCGIs). Firstly, the influence of the resonance points caused by the interaction of multiple HCGIs on the control bandwidth is analyzed, and the analysis result shows that the control bandwidth becomes narrow due to the appearance of a new resonance point. Then, to increase the control bandwidth of multi-parallel HCGIs, six different types of virtual impedance circuits are constructed and compared, and the bandwidth control method based on virtual impedance by capacitor voltage feedback is proposed. Following that, the relationship between feedback coefficient and bandwidth is established, the design approach of parameters for the proposed method is presented. Finally, the proposed method is confirmed by the simulation and experimental tests. The simulation and experimental results show that the proposed control method can effectively shift resonance frequencies right to solve the issue of control bandwidth reduction in multi-parallel HCGIs systems, while without affecting the low-frequency harmonic current compensation.

Suggested Citation

  • Jingrong Yu & Limin Deng & Dongran Song & Maolin Pei, 2019. "Wide Bandwidth Control for Multi-Parallel Grid-Connected Inverters with Harmonic Compensation," Energies, MDPI, vol. 12(3), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:571-:d:205198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shahbaz Khan & Xiaobin Zhang & Muhammad Saad & Husan Ali & Bakht Muhammad Khan & Haider Zaman, 2018. "Comparative Analysis of 18-Pulse Autotransformer Rectifier Unit Topologies with Intrinsic Harmonic Current Cancellation," Energies, MDPI, vol. 11(6), pages 1-18, May.
    2. Ningyun Zhang & Houjun Tang & Chen Yao, 2014. "A Systematic Method for Designing a PR Controller and Active Damping of the LCL Filter for Single-Phase Grid-Connected PV Inverters," Energies, MDPI, vol. 7(6), pages 1-21, June.
    3. Song, Dongran & Fan, Xinyu & Yang, Jian & Liu, Anfeng & Chen, Sifan & Joo, Young Hoon, 2018. "Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method," Applied Energy, Elsevier, vol. 224(C), pages 267-279.
    4. Nian-Cheng Zhou & Xiao-Xuan Lou & David Yu & Qiang-Gang Wang & Jia-Jia Wang, 2015. "Harmonic Injection-Based Power Fluctuation Control of Three-Phase PV Systems under Unbalanced Grid Voltage Conditions," Energies, MDPI, vol. 8(2), pages 1-16, February.
    5. Song, Dongran & Yang, Jian & Dong, Mi & Joo, Young Hoon, 2017. "Model predictive control with finite control set for variable-speed wind turbines," Energy, Elsevier, vol. 126(C), pages 564-572.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu Cao & Kangli Liu & Haotian Kang & Shunyu Wang & Dongchen Fan & Jianfeng Zhao, 2019. "Resonance Detection Strategy for Multi-Parallel Inverter-Based Grid-Connected Renewable Power System Using Cascaded SOGI-FLL," Sustainability, MDPI, vol. 11(18), pages 1-15, September.
    2. Haijun Tao & Yousong Zhou & Guopeng Zhang & Zheng Zheng, 2019. "Parallel Resonance Mechanism Analysis and Suppression of Inductance-Capacitance-Inductance Grid-Connected Inverters," Energies, MDPI, vol. 12(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Liu & Lin Guan & Fang Guo & Jianping Zheng & Jianfu Chen & Chao Liu & Josep M. Guerrero, 2019. "A Reactive Power-Voltage Control Strategy of an AC Microgrid Based on Adaptive Virtual Impedance," Energies, MDPI, vol. 12(16), pages 1-15, August.
    2. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    3. Longfu Luo & Xiaofeng Zhang & Dongran Song & Weiyi Tang & Jian Yang & Li Li & Xiaoyu Tian & Wu Wen, 2018. "Optimal Design of Rated Wind Speed and Rotor Radius to Minimizing the Cost of Energy for Offshore Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-17, October.
    4. Song, Dongran & Yang, Yinggang & Zheng, Songyue & Tang, Weiyi & Yang, Jian & Su, Mei & Yang, Xuebing & Joo, Young Hoon, 2019. "Capacity factor estimation of variable-speed wind turbines considering the coupled influence of the QN-curve and the air density," Energy, Elsevier, vol. 183(C), pages 1049-1060.
    5. Song, Dongran & Liu, Junbo & Yang, Yinggang & Yang, Jian & Su, Mei & Wang, Yun & Gui, Ning & Yang, Xuebing & Huang, Lingxiang & Hoon Joo, Young, 2021. "Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm," Energy, Elsevier, vol. 221(C).
    6. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    7. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    8. Haolan Liang & Zhangjie Liu & Hua Liu, 2019. "Stabilization Method Considering Disturbance Mitigation for DC Microgrids with Constant Power Loads," Energies, MDPI, vol. 12(5), pages 1-19, March.
    9. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    10. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    11. Weiyi Zhang & Daniel Remon & Antoni M. Cantarellas & Pedro Rodriguez, 2016. "A Unified Current Loop Tuning Approach for Grid-Connected Photovoltaic Inverters," Energies, MDPI, vol. 9(9), pages 1-19, September.
    12. Cao, Yankai & Zavala, Victor M. & D’Amato, Fernando, 2018. "Using stochastic programming and statistical extrapolation to mitigate long-term extreme loads in wind turbines," Applied Energy, Elsevier, vol. 230(C), pages 1230-1241.
    13. Silpa Baburajan & Haoran Wang & Dinesh Kumar & Qian Wang & Frede Blaabjerg, 2021. "DC-Link Current Harmonic Mitigation via Phase-Shifting of Carrier Waves in Paralleled Inverter Systems," Energies, MDPI, vol. 14(14), pages 1-17, July.
    14. Lei, Hang & Su, Jie & Bao, Yan & Chen, Yaoran & Han, Zhaolong & Zhou, Dai, 2019. "Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms," Energy, Elsevier, vol. 166(C), pages 471-489.
    15. Jura Arkhangelski & Pedro Roncero-Sánchez & Mahamadou Abdou-Tankari & Javier Vázquez & Gilles Lefebvre, 2019. "Control and Restrictions of a Hybrid Renewable Energy System Connected to the Grid: A Battery and Supercapacitor Storage Case," Energies, MDPI, vol. 12(14), pages 1-23, July.
    16. Jun Liu & Feihang Zhou & Chencong Zhao & Zhuoran Wang, 2019. "A PI-Type Sliding Mode Controller Design for PMSG-Based Wind Turbine," Complexity, Hindawi, vol. 2019, pages 1-12, June.
    17. Hemakesavulu Oruganti & Subranshu Sekhar Dash & Chellammal Nallaperumal & Sridhar Ramasamy, 2018. "A Proportional Resonant Controller for Suppressing Resonance in Grid Tied Multilevel Inverter," Energies, MDPI, vol. 11(5), pages 1-15, April.
    18. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    19. Shiying Zhou & Xudong Zou & Donghai Zhu & Li Tong & Yong Kang, 2017. "Improved Capacitor Voltage Feedforward for Three-Phase LCL-Type Grid-Connected Converter to Suppress Start-Up Inrush Current," Energies, MDPI, vol. 10(5), pages 1-19, May.
    20. Janusz Baran & Andrzej Jąderko, 2020. "An MPPT Control of a PMSG-Based WECS with Disturbance Compensation and Wind Speed Estimation," Energies, MDPI, vol. 13(23), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:571-:d:205198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.