IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v341y2023ics0306261923004725.html
   My bibliography  Save this article

Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm

Author

Listed:
  • Tavakol Aghaei, Vahid
  • Ağababaoğlu, Arda
  • Bawo, Biram
  • Naseradinmousavi, Peiman
  • Yıldırım, Sinan
  • Yeşilyurt, Serhat
  • Onat, Ahmet

Abstract

This study focuses on the numerical analysis and optimal control of vertical-axis wind turbines (VAWT) using Bayesian reinforcement learning (RL). We specifically address small-scale wind turbines, which are well-suited to local and compact production of electrical energy on a small scale, such as urban and rural infrastructure installations. Existing literature concentrates on large scale wind turbines which run in unobstructed, mostly constant wind profiles. However urban installations generally must cope with rapidly changing wind patterns. To bridge this gap, we formulate and implement an RL strategy using the Markov chain Monte Carlo (MCMC) algorithm to optimize the long-term energy output of a wind turbine. Our MCMC-based RL algorithm is a model-free and gradient-free algorithm, in which the designer does not have to know the precise dynamics of the plant and its uncertainties. Our method addresses the uncertainties by using a multiplicative reward structure, in contrast with additive reward used in conventional RL approaches. We have shown numerically that the method specifically overcomes the shortcomings typically associated with conventional solutions, including, but not limited to, component aging, modeling errors, and inaccuracies in the estimation of wind speed patterns. Our results show that the proposed method is especially successful in capturing power from wind transients; by modulating the generator load and hence the rotor torque load, so that the rotor tip speed quickly reaches the optimum value for the anticipated wind speed. This ratio of rotor tip speed to wind speed is known to be critical in wind power applications. The wind to load energy efficiency of the proposed method was shown to be superior to two other methods; the classical maximum power point tracking method and a generator controlled by deep deterministic policy gradient (DDPG) method.

Suggested Citation

  • Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
  • Handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004725
    DOI: 10.1016/j.apenergy.2023.121108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923004725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramadoni Syahputra & Indah Soesanti, 2019. "Performance Improvement for Small-Scale Wind Turbine System Based on Maximum Power Point Tracking Control," Energies, MDPI, vol. 12(20), pages 1-18, October.
    2. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    3. Kuo-Hao Chang & L. Jeff Hong & Hong Wan, 2013. "Stochastic Trust-Region Response-Surface Method (STRONG)---A New Response-Surface Framework for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 230-243, May.
    4. Keighobadi, Jafar & Mohammadian KhalafAnsar, Hadi & Naseradinmousavi, Peiman, 2022. "Adaptive neural dynamic surface control for uniform energy exploitation of floating wind turbine," Applied Energy, Elsevier, vol. 316(C).
    5. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    6. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    7. Luis Rios & Nikolaos Sahinidis, 2013. "Derivative-free optimization: a review of algorithms and comparison of software implementations," Journal of Global Optimization, Springer, vol. 56(3), pages 1247-1293, July.
    8. Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
    9. Dong, Hongyang & Zhang, Jincheng & Zhao, Xiaowei, 2021. "Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations," Applied Energy, Elsevier, vol. 292(C).
    10. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Jiang, Zhiqiang & Feng, Zhongkai & Zhou, Jianzhong, 2020. "Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model," Applied Energy, Elsevier, vol. 260(C).
    11. Park, Jinkyoo & Law, Kincho H., 2016. "A data-driven, cooperative wind farm control to maximize the total power production," Applied Energy, Elsevier, vol. 165(C), pages 151-165.
    12. Zhang, Zhendong & Ye, Lei & Qin, Hui & Liu, Yongqi & Wang, Chao & Yu, Xiang & Yin, Xingli & Li, Jie, 2019. "Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression," Applied Energy, Elsevier, vol. 247(C), pages 270-284.
    13. Bai, Yulong & Liu, Ming-De & Ding, Lin & Ma, Yong-Jie, 2021. "Double-layer staged training echo-state networks for wind speed prediction using variational mode decomposition," Applied Energy, Elsevier, vol. 301(C).
    14. Youssef, Abdel-Raheem & Mousa, Hossam H.H. & Mohamed, Essam E.M., 2020. "Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area," Renewable Energy, Elsevier, vol. 154(C), pages 875-893.
    15. Elizabeth Michael, Neethu & Hasan, Shazia & Al-Durra, Ahmed & Mishra, Manohar, 2022. "Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network," Applied Energy, Elsevier, vol. 324(C).
    16. Kofinas, P. & Doltsinis, S. & Dounis, A.I. & Vouros, G.A., 2017. "A reinforcement learning approach for MPPT control method of photovoltaic sources," Renewable Energy, Elsevier, vol. 108(C), pages 461-473.
    17. Song, Dongran & Yang, Jian & Dong, Mi & Joo, Young Hoon, 2017. "Model predictive control with finite control set for variable-speed wind turbines," Energy, Elsevier, vol. 126(C), pages 564-572.
    18. Hu, Lu & Xue, Fei & Qin, Zijian & Shi, Jiying & Qiao, Wen & Yang, Wenjing & Yang, Ting, 2019. "Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system," Applied Energy, Elsevier, vol. 248(C), pages 567-575.
    19. Yu, Chuanjin & Li, Yongle & Chen, Qian & Lai, Xiaopan & Zhao, Liyang, 2022. "Matrix-based wavelet transformation embedded in recurrent neural networks for wind speed prediction," Applied Energy, Elsevier, vol. 324(C).
    20. Mehran Hosseini-Pishrobat & Jafar Keighobadi & Atta Oveisi & Tamara Nestorović, 2018. "Robust Linear Output Regulation Using Extended State Observer," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-12, August.
    21. Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
    22. Yu, Ruiguo & Liu, Zhiqiang & Li, Xuewei & Lu, Wenhuan & Ma, Degang & Yu, Mei & Wang, Jianrong & Li, Bin, 2019. "Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space," Applied Energy, Elsevier, vol. 238(C), pages 249-257.
    23. Tripathi, S.M. & Tiwari, A.N. & Singh, Deependra, 2015. "Grid-integrated permanent magnet synchronous generator based wind energy conversion systems: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1288-1305.
    24. Wang, Jujie & Li, Yaning, 2018. "Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy," Applied Energy, Elsevier, vol. 230(C), pages 429-443.
    25. Yang, Bo & Yu, Tao & Shu, Hongchun & Zhang, Yuming & Chen, Jian & Sang, Yiyan & Jiang, Lin, 2018. "Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine," Renewable Energy, Elsevier, vol. 119(C), pages 577-589.
    26. Zhang, Yagang & Zhao, Yunpeng & Shen, Xiaoyu & Zhang, Jinghui, 2022. "A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 305(C).
    27. Qin, Yong & Li, Kun & Liang, Zhanhao & Lee, Brendan & Zhang, Fuyong & Gu, Yongcheng & Zhang, Lei & Wu, Fengzhi & Rodriguez, Dragan, 2019. "Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal," Applied Energy, Elsevier, vol. 236(C), pages 262-272.
    28. Wang, Lei & He, Yigang, 2022. "M2STAN: Multi-modal multi-task spatiotemporal attention network for multi-location ultra-short-term wind power multi-step predictions," Applied Energy, Elsevier, vol. 324(C).
    29. Han, Yan & Mi, Lihua & Shen, Lian & Cai, C.S. & Liu, Yuchen & Li, Kai & Xu, Guoji, 2022. "A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting," Applied Energy, Elsevier, vol. 312(C).
    30. Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Jingjie & Dong, Hongyang & Zhao, Xiaowei, 2023. "Data-driven torque and pitch control of wind turbines via reinforcement learning," Renewable Energy, Elsevier, vol. 215(C).
    2. Homod, Raad Z. & Mohammed, Hayder Ibrahim & Abderrahmane, Aissa & Alawi, Omer A. & Khalaf, Osamah Ibrahim & Mahdi, Jasim M. & Guedri, Kamel & Dhaidan, Nabeel S. & Albahri, A.S. & Sadeq, Abdellatif M. , 2023. "Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent," Applied Energy, Elsevier, vol. 351(C).
    3. Mazare, Mahmood, 2024. "Adaptive optimal secure wind power generation control for variable speed wind turbine systems via reinforcement learning," Applied Energy, Elsevier, vol. 353(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Huanxiang & Hu, Gang & Zhang, Dongqin & Jiang, Wenjun & Ren, Hehe & Chen, Wenli, 2024. "Prediction of wind fields in mountains at multiple elevations using deep learning models," Applied Energy, Elsevier, vol. 353(PA).
    2. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.
    3. Liu, Guanjun & Wang, Yun & Qin, Hui & Shen, Keyan & Liu, Shuai & Shen, Qin & Qu, Yuhua & Zhou, Jianzhong, 2023. "Probabilistic spatiotemporal forecasting of wind speed based on multi-network deep ensembles method," Renewable Energy, Elsevier, vol. 209(C), pages 231-247.
    4. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Jiang, Zhiqiang & Feng, Zhongkai & Zhou, Jianzhong, 2020. "Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model," Applied Energy, Elsevier, vol. 260(C).
    5. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    6. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    7. Guanjun Liu & Chao Wang & Hui Qin & Jialong Fu & Qin Shen, 2022. "A Novel Hybrid Machine Learning Model for Wind Speed Probabilistic Forecasting," Energies, MDPI, vol. 15(19), pages 1-16, September.
    8. Ma, Long & Huang, Ling & Shi, Huifeng, 2023. "Multi-node wind speed forecasting based on a novel dynamic spatial–temporal graph network," Energy, Elsevier, vol. 285(C).
    9. Zhao, Ning & Su, Yi & Dai, Xianxing & Jia, Shaomin & Wang, Xuewei, 2024. "A new decomposition-ensemble strategy fusion with correntropy optimization learning algorithms for short-term wind speed prediction," Applied Energy, Elsevier, vol. 369(C).
    10. Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
    11. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    12. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
    13. Wang, Jian-jun & Deng, Yu-cong & Sun, Wen-biao & Zheng, Xiao-bin & Cui, Zheng, 2023. "Maximum power point tracking method based on impedance matching for a micro hydropower generator," Applied Energy, Elsevier, vol. 340(C).
    14. Dong, Zhen & Li, Zhongguo & Liang, Zhongchao & Xu, Yiqiao & Ding, Zhengtao, 2021. "Distributed neural network enhanced power generation strategy of large-scale wind power plant for power expansion," Applied Energy, Elsevier, vol. 303(C).
    15. Chen, Qian & He, Peng & Yu, Chuanjin & Zhang, Xiaochi & He, Jiayong & Li, Yongle, 2023. "Multi-step short-term wind speed predictions employing multi-resolution feature fusion and frequency information mining," Renewable Energy, Elsevier, vol. 215(C).
    16. Xiang Ying & Keke Zhao & Zhiqiang Liu & Jie Gao & Dongxiao He & Xuewei Li & Wei Xiong, 2022. "Wind Speed Prediction via Collaborative Filtering on Virtual Edge Expanding Graphs," Mathematics, MDPI, vol. 10(11), pages 1-16, June.
    17. Dali, Ali & Abdelmalek, Samir & Bakdi, Azzeddine & Bettayeb, Maamar, 2021. "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, Elsevier, vol. 172(C), pages 1021-1034.
    18. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    19. Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
    20. Wang, Jianzhou & Wang, Shuai & Li, Zhiwu, 2021. "Wind speed deterministic forecasting and probabilistic interval forecasting approach based on deep learning, modified tunicate swarm algorithm, and quantile regression," Renewable Energy, Elsevier, vol. 179(C), pages 1246-1261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.