IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v149y2018icp341-353.html
   My bibliography  Save this article

Application of nonlinear multivariable model predictive control to transient operation of a gas turbine and NOX emissions reduction

Author

Listed:
  • Pires, Thiago S.
  • Cruz, Manuel E.
  • Colaço, Marcelo J.
  • Alves, Marco A.C.

Abstract

This work aims to apply a multivariable nonlinear model-based predictive control strategy (MPC) to avoid unsafe or inappropriate operation of gas turbines, while reducing NOx emissions. In this context, the control variables are the compressor speed and the temperature after the turbine. The controller maintains the speed proportional to the grid frequency during load changes. Additionally, in cases where the turbine is installed in a combined heat and power cycle, the discharge temperature must follow a reference, to ensure the quality of the steam generated. The control is achieved by manipulating the fuel flow in the combustion chamber and the variable inlet guide vanes of the compressor. The nonlinear dynamic behavior of an industrial gas turbine is modeled using a first principle process simulator, which solves the mass, energy and momentum conservation equations, together with an equation of state. Furthermore, pollutant emissions are minimized as part of the process, through an optimization procedure. The optimization problem is solved through the implementation of three different evolutionary algorithms and one direct search method. The proposed control strategy is successfully applied to a gas turbine in load rejection scenarios, and the optimization fulfills its goal by reducing nitrogen oxides emissions.

Suggested Citation

  • Pires, Thiago S. & Cruz, Manuel E. & Colaço, Marcelo J. & Alves, Marco A.C., 2018. "Application of nonlinear multivariable model predictive control to transient operation of a gas turbine and NOX emissions reduction," Energy, Elsevier, vol. 149(C), pages 341-353.
  • Handle: RePEc:eee:energy:v:149:y:2018:i:c:p:341-353
    DOI: 10.1016/j.energy.2018.02.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218302706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Dongran & Yang, Jian & Dong, Mi & Joo, Young Hoon, 2017. "Model predictive control with finite control set for variable-speed wind turbines," Energy, Elsevier, vol. 126(C), pages 564-572.
    2. Li, Ye & Cui, Qiang, 2017. "Carbon neutral growth from 2020 strategy and airline environmental inefficiency: A Network Range Adjusted Environmental Data Envelopment Analysis," Applied Energy, Elsevier, vol. 199(C), pages 13-24.
    3. Kong, Xiaobing & Liu, Xiangjie & Lee, Kwang Y., 2015. "Nonlinear multivariable hierarchical model predictive control for boiler-turbine system," Energy, Elsevier, vol. 93(P1), pages 309-322.
    4. Pires, Thiago S. & Cruz, Manuel E. & Colaço, Marcelo J., 2013. "Response surface method applied to the thermoeconomic optimization of a complex cogeneration system modeled in a process simulator," Energy, Elsevier, vol. 52(C), pages 44-54.
    5. Khidr, Kareem I. & Eldrainy, Yehia A. & EL-Kassaby, Mohamed M., 2017. "Towards lower gas turbine emissions: Flameless distributed combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1237-1266.
    6. Ponce, Carolina V. & Sáez, Doris & Bordons, Carlos & Núñez, Alfredo, 2016. "Dynamic simulator and model predictive control of an integrated solar combined cycle plant," Energy, Elsevier, vol. 109(C), pages 974-986.
    7. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Nianci & Pan, Lei & Pedersen, Simon & Arabkoohsar, Ahmad, 2023. "A two-dimensional design and synthesis method for coordinated control of flexible-operational combined cycle of gas turbine," Energy, Elsevier, vol. 284(C).
    2. Kong, Xiaobing & Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Lee, Kwang Y., 2023. "Stable feedback linearization-based economic MPC scheme for thermal power plant," Energy, Elsevier, vol. 268(C).
    3. Zhao, Qiaonan & Liu, Feng & Jiao, Anyao & Yang, Qiguo & Xu, Hongtao & Liao, Xiaowei, 2023. "Prediction model of NOx emissions in the heavy-duty gas turbine combustor based on MILD combustion," Energy, Elsevier, vol. 282(C).
    4. Alessandro Rosini & Alessandro Palmieri & Damiano Lanzarotto & Renato Procopio & Andrea Bonfiglio, 2019. "A Model Predictive Control Design for Power Generation Heavy-Duty Gas Turbines," Energies, MDPI, vol. 12(11), pages 1-17, June.
    5. Chuanpeng Zhu & Pu Huang & Yiguo Li, 2022. "Closed-Loop Combustion Optimization Based on Dynamic and Adaptive Models with Application to a Coal-Fired Boiler," Energies, MDPI, vol. 15(14), pages 1-16, July.
    6. Ma, Yujia & Liu, Jinfu & Zhu, Linhai & Li, Qi & Guo, Yaqiong & Liu, Huanpeng & Yu, Daren, 2022. "Multi-objective performance optimization and control for gas turbine Part-load operation Energy-saving and NOx emission reduction," Applied Energy, Elsevier, vol. 320(C).
    7. Hosseinalipour, S.M. & Fattahi, A. & Khalili, H. & Tootoonchian, F. & Karimi, N., 2020. "Experimental investigation of entropy waves’ evolution for understanding of indirect combustion noise in gas turbine combustors," Energy, Elsevier, vol. 195(C).
    8. Bai, Jiayu & Liu, Feng & Xue, Xiaodai & Wei, Wei & Chen, Laijun & Wang, Guohua & Mei, Shengwei, 2021. "Modelling and control of advanced adiabatic compressed air energy storage under power tracking mode considering off-design generating conditions," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandrasekharan, Sreepradha & Panda, Rames C. & Swaminathan, Bhuvaneswari Natrajan & Panda, Atanu, 2018. "Operational control of an integrated drum boiler of a coal fired thermal power plant," Energy, Elsevier, vol. 159(C), pages 977-987.
    2. Cui, Qiang & Li, Xin-yi, 2021. "Investigating the Profit Pollution Abatement Costs difference before and after the “Carbon neutral growth from 2020” strategy was proposed," Research in Transportation Economics, Elsevier, vol. 90(C).
    3. Cui, Qiang & Li, Ye & Wei, Yi-Ming, 2017. "Exploring the impacts of EU ETS on the pollution abatement costs of European airlines: An application of Network Environmental Production Function," Transport Policy, Elsevier, vol. 60(C), pages 131-142.
    4. Cui, Qiang, 2019. "The online pricing strategy of low-cost carriers when carbon tax and competition are considered," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 420-432.
    5. Cui, Qiang & Jin, Zi-yin, 2020. "Airline environmental efficiency measures considering negative data: An application of a modified network Modified Slacks-based measure model," Energy, Elsevier, vol. 207(C).
    6. Cui, Qiang, 2019. "Investigating the airlines emission reduction through carbon trading under CNG2020 strategy via a Network Weak Disposability DEA," Energy, Elsevier, vol. 180(C), pages 763-771.
    7. Cui, Qiang & Lin, Jing-ling & Jin, Zi-yin, 2020. "Evaluating airline efficiency under “Carbon Neutral Growth from 2020” strategy through a Network Interval Slack-Based Measure," Energy, Elsevier, vol. 193(C).
    8. Arjomandi, Amir & Dakpo, K. Hervé & Seufert, Juergen Heinz, 2018. "Have Asian airlines caught up with European Airlines? A by-production efficiency analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 389-403.
    9. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 130-143.
    10. Li, Ye & Cui, Qiang, 2018. "Airline efficiency with optimal employee allocation: An Input-shared Network Range Adjusted Measure," Journal of Air Transport Management, Elsevier, vol. 73(C), pages 150-162.
    11. Li, Ye & Cui, Qiang, 2018. "Investigating the role of cooperation in the GHG abatement costs of airlines under CNG2020 strategy via a DEA cross PAC model," Energy, Elsevier, vol. 161(C), pages 725-736.
    12. See, Kok Fong & Rashid, Azwan Abdul & Yu, Ming-Miin, 2024. "Measuring the network capacity utilization, energy consumption and environmental inefficiency of global airlines," Energy Economics, Elsevier, vol. 132(C).
    13. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
    14. Thanh Ngo & Kan Wai Hong Tsui, 2022. "Estimating the confidence intervals for DEA efficiency scores of Asia-Pacific airlines," Operational Research, Springer, vol. 22(4), pages 3411-3434, September.
    15. Ying Li & Tai‐Yu Lin & Yung‐ho Chiu & Shu‐Ning Lin & Tzu‐Han Chang, 2021. "Impact of alliances and delay rate on airline performance," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(6), pages 1607-1618, September.
    16. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    17. Xu, Shunta & Xi, Liyang & Tian, Songjie & Tu, Yaojie & Chen, Sheng & Zhang, Shihong & Liu, Hao, 2023. "Numerical investigation of pressure and H2O dilution effects on NO formation and reduction pathways in pure hydrogen MILD combustion," Applied Energy, Elsevier, vol. 350(C).
    18. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    19. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    20. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Target setting for airlines incorporating CO2 emissions: The DEA bargaining approach," Journal of Air Transport Management, Elsevier, vol. 108(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:149:y:2018:i:c:p:341-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.