IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3057-d255906.html
   My bibliography  Save this article

A Reactive Power-Voltage Control Strategy of an AC Microgrid Based on Adaptive Virtual Impedance

Author

Listed:
  • Yao Liu

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China
    Zhuhai Power Supply Bureau of Guangdong Power Grid Corporation, Zhuhai 519000, China)

  • Lin Guan

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Fang Guo

    (School of Automation Foshan University, Foshan 528225, China)

  • Jianping Zheng

    (Development Department of Guangdong Power Grid Corporation, Guangzhou 510030, China)

  • Jianfu Chen

    (Zhuhai Power Supply Bureau of Guangdong Power Grid Corporation, Zhuhai 519000, China)

  • Chao Liu

    (Zhuhai Power Supply Bureau of Guangdong Power Grid Corporation, Zhuhai 519000, China)

  • Josep M. Guerrero

    (Department of Energy Technology, Aalborg University, DK-9220 Aalborg East, Denmark)

Abstract

As an effective carrier of distributed generation, a microgrid is an effective way to ensure that distributed power can be reasonably utilized. However, due to the property of line impedance and other factors in a microgrid, reactive power supplied by distributed generation units cannot be shared rationally. To efficiently improve reactive power sharing, this paper proposes a reactive power-voltage control strategy based on adaptive virtual impedance. This method changes the voltage reference value by adding an adaptive term based on the traditional virtual impedance. Meanwhile, a voltage recovery mechanism was used to compensate the decline of distributed generation (DG) output voltage in the process. MATLAB/Simulink simulations and experimental results show that the proposed controller can effectively improve the steady state performance of the active and reactive power sharing. Finally, the feasibility and effectiveness of the proposed control strategy were verified.

Suggested Citation

  • Yao Liu & Lin Guan & Fang Guo & Jianping Zheng & Jianfu Chen & Chao Liu & Josep M. Guerrero, 2019. "A Reactive Power-Voltage Control Strategy of an AC Microgrid Based on Adaptive Virtual Impedance," Energies, MDPI, vol. 12(16), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3057-:d:255906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Morteza Afrasiabi & Esmaeel Rokrok, 2018. "An Improved Centralized Control Structure for Compensation of Voltage Distortions in Inverter-Based Microgrids," Energies, MDPI, vol. 11(7), pages 1-13, July.
    2. Liang Zhang & Kang Chen & Ling Lyu & Guowei Cai, 2019. "Research on the Operation Control Strategy of a Low-Voltage Direct Current Microgrid Based on a Disturbance Observer and Neural Network Adaptive Control Algorithm," Energies, MDPI, vol. 12(6), pages 1-17, March.
    3. Song, Dongran & Fan, Xinyu & Yang, Jian & Liu, Anfeng & Chen, Sifan & Joo, Young Hoon, 2018. "Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method," Applied Energy, Elsevier, vol. 224(C), pages 267-279.
    4. Chang Yuan & Peilin Xie & Dan Yang & Xiangning Xiao, 2018. "Transient Stability Analysis of Islanded AC Microgrids with a Significant Share of Virtual Synchronous Generators," Energies, MDPI, vol. 11(1), pages 1-19, January.
    5. Song, Dongran & Yang, Jian & Dong, Mi & Joo, Young Hoon, 2017. "Model predictive control with finite control set for variable-speed wind turbines," Energy, Elsevier, vol. 126(C), pages 564-572.
    6. Zhilin Lyu & Qing Wei & Yiyi Zhang & Junhui Zhao & Emad Manla, 2018. "Adaptive Virtual Impedance Droop Control Based on Consensus Control of Reactive Current," Energies, MDPI, vol. 11(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    2. Longfu Luo & Xiaofeng Zhang & Dongran Song & Weiyi Tang & Jian Yang & Li Li & Xiaoyu Tian & Wu Wen, 2018. "Optimal Design of Rated Wind Speed and Rotor Radius to Minimizing the Cost of Energy for Offshore Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-17, October.
    3. Jingrong Yu & Limin Deng & Dongran Song & Maolin Pei, 2019. "Wide Bandwidth Control for Multi-Parallel Grid-Connected Inverters with Harmonic Compensation," Energies, MDPI, vol. 12(3), pages 1-22, February.
    4. Song, Dongran & Yang, Yinggang & Zheng, Songyue & Tang, Weiyi & Yang, Jian & Su, Mei & Yang, Xuebing & Joo, Young Hoon, 2019. "Capacity factor estimation of variable-speed wind turbines considering the coupled influence of the QN-curve and the air density," Energy, Elsevier, vol. 183(C), pages 1049-1060.
    5. Song, Dongran & Liu, Junbo & Yang, Yinggang & Yang, Jian & Su, Mei & Wang, Yun & Gui, Ning & Yang, Xuebing & Huang, Lingxiang & Hoon Joo, Young, 2021. "Maximum wind energy extraction of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm," Energy, Elsevier, vol. 221(C).
    6. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    7. Haolan Liang & Zhangjie Liu & Hua Liu, 2019. "Stabilization Method Considering Disturbance Mitigation for DC Microgrids with Constant Power Loads," Energies, MDPI, vol. 12(5), pages 1-19, March.
    8. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    9. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    10. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    11. Cao, Yankai & Zavala, Victor M. & D’Amato, Fernando, 2018. "Using stochastic programming and statistical extrapolation to mitigate long-term extreme loads in wind turbines," Applied Energy, Elsevier, vol. 230(C), pages 1230-1241.
    12. Chenghao Ma & Jiahang Sun & Jingguang Huang & Kaijie Wang, 2023. "Transient Stability Enhancement Strategy for Islanded Microgrids Based on Energy Storage–Virtual Synchronous Machine Control," Energies, MDPI, vol. 16(17), pages 1-21, September.
    13. Biyun Chen & Haoying Chen & Yiyi Zhang & Junhui Zhao & Emad Manla, 2019. "Risk Assessment for the Power Grid Dispatching Process Considering the Impact of Cyber Systems," Energies, MDPI, vol. 12(6), pages 1-18, March.
    14. Anton Petrochenkov & Nikolai Pavlov & Nikolai Bachev & Alexander Romodin & Iurii Butorin & Nikolai Kolesnikov, 2023. "Ensuring Power Balance in the Electrical Grid of an Oil-and-Gas-Producing Enterprise with Distributed Generation Using Associated Petroleum Gas," Sustainability, MDPI, vol. 15(19), pages 1-15, September.
    15. Mariano G. Ippolito & Rossano Musca & Eleonora Riva Sanseverino & Gaetano Zizzo, 2022. "Frequency Dynamics in Fully Non-Synchronous Electrical Grids: A Case Study of an Existing Island," Energies, MDPI, vol. 15(6), pages 1-24, March.
    16. Lei, Hang & Su, Jie & Bao, Yan & Chen, Yaoran & Han, Zhaolong & Zhou, Dai, 2019. "Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms," Energy, Elsevier, vol. 166(C), pages 471-489.
    17. Gonzalo Abad & Aitor Laka & Gabriel Saavedra & Jon Andoni Barrena, 2018. "Analytical Modeling Approach to Study Harmonic Mitigation in AC Grids with Active Impedance at Selective Frequencies," Energies, MDPI, vol. 11(6), pages 1-31, May.
    18. Jun Liu & Feihang Zhou & Chencong Zhao & Zhuoran Wang, 2019. "A PI-Type Sliding Mode Controller Design for PMSG-Based Wind Turbine," Complexity, Hindawi, vol. 2019, pages 1-12, June.
    19. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    20. Janusz Baran & Andrzej Jąderko, 2020. "An MPPT Control of a PMSG-Based WECS with Disturbance Compensation and Wind Speed Estimation," Energies, MDPI, vol. 13(23), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3057-:d:255906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.