IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v131y2019icp549-562.html
   My bibliography  Save this article

Tube-based explicit model predictive output-feedback controller for collective pitching of wind turbines

Author

Listed:
  • Lasheen, Ahmed
  • Saad, Mohamed S.
  • Emara, Hassan M.
  • Elshafei, Abdel Latif

Abstract

Collective pitch control is the main tool used to regulate the speed and power of wind turbines while operating above their rated wind speeds. The main challenges that face collective pitch control designs are the constraints on the control actions, the unmodeled uncertainties, and the unmeasured system states. A tube – based explicit model-predictive output-feedback controller is designed to control the collective pitch angle. The proposed controller is capable of handling the constraints challenge, reducing the on-line computational time and producing the optimal control sequence. Furthermore, the proposed controller is robust against the unmodeled uncertainties. The challenge of unmeasured system states is eliminated since this is an output feedback controller. The performance of the proposed controller is compared to the performance of a gain-scheduled PI controller which is commonly adopted in industry. Simulation results through application to a typical 5-MW offshore wind turbine are obtained. Further, experimental results with hardware in loop are obtained for a reduced scale wind turbine model to demonstrate the feasibility of the controller for real time applications. Simulation and experimental results show the superiority of the proposed controller over the gain-scheduled PI controller.

Suggested Citation

  • Lasheen, Ahmed & Saad, Mohamed S. & Emara, Hassan M. & Elshafei, Abdel Latif, 2019. "Tube-based explicit model predictive output-feedback controller for collective pitching of wind turbines," Renewable Energy, Elsevier, vol. 131(C), pages 549-562.
  • Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:549-562
    DOI: 10.1016/j.renene.2018.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118308309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Dongran & Yang, Jian & Dong, Mi & Joo, Young Hoon, 2017. "Model predictive control with finite control set for variable-speed wind turbines," Energy, Elsevier, vol. 126(C), pages 564-572.
    2. Odgaard, Peter Fogh & Larsen, Lars F.S. & Wisniewski, Rafael & Hovgaard, Tobias Gybel, 2016. "On using Pareto optimality to tune a linear model predictive controller for wind turbines," Renewable Energy, Elsevier, vol. 87(P2), pages 884-891.
    3. Lasheen, Ahmed & Saad, Mohamed S. & Emara, Hassan M. & Elshafei, Abdel Latif, 2017. "Continuous-time tube-based explicit model predictive control for collective pitching of wind turbines," Energy, Elsevier, vol. 118(C), pages 1222-1233.
    4. Lasheen, Ahmed & Elshafei, Abdel Latif, 2016. "Wind-turbine collective-pitch control via a fuzzy predictive algorithm," Renewable Energy, Elsevier, vol. 87(P1), pages 298-306.
    5. Jain, Achin & Schildbach, Georg & Fagiano, Lorenzo & Morari, Manfred, 2015. "On the design and tuning of linear model predictive control for wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 664-673.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jianshen & Wang, Shuangxin & Li, Yaguang, 2020. "A model-free adaptive controller with tracking error differential for collective pitching of wind turbines," Renewable Energy, Elsevier, vol. 161(C), pages 435-447.
    2. Li, Jianshen & Wang, Shuangxin, 2021. "Dual multivariable model-free adaptive individual pitch control for load reduction in wind turbines with actuator faults," Renewable Energy, Elsevier, vol. 174(C), pages 293-304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    2. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    3. Song, Dongran & Yang, Jian & Su, Mei & Liu, Anfeng & Cai, Zili & Liu, Yao & Joo, Young Hoon, 2017. "A novel wind speed estimator-integrated pitch control method for wind turbines with global-power regulation," Energy, Elsevier, vol. 138(C), pages 816-830.
    4. Song, Dongran & Yang, Jian & Dong, Mi & Joo, Young Hoon, 2017. "Model predictive control with finite control set for variable-speed wind turbines," Energy, Elsevier, vol. 126(C), pages 564-572.
    5. Li, Jianshen & Wang, Shuangxin & Li, Yaguang, 2020. "A model-free adaptive controller with tracking error differential for collective pitching of wind turbines," Renewable Energy, Elsevier, vol. 161(C), pages 435-447.
    6. Jinghan Cui & Su Liu & Jinfeng Liu & Xiangjie Liu, 2018. "A Comparative Study of MPC and Economic MPC of Wind Energy Conversion Systems," Energies, MDPI, vol. 11(11), pages 1-23, November.
    7. El-Baklish, Shaimaa K. & El-Badawy, Ayman A. & Frison, Gianluca & Diehl, Moritz, 2020. "Nonlinear model predictive pitch control of aero-elastic wind turbine blades," Renewable Energy, Elsevier, vol. 161(C), pages 777-791.
    8. Cao, Yankai & Zavala, Victor M. & D’Amato, Fernando, 2018. "Using stochastic programming and statistical extrapolation to mitigate long-term extreme loads in wind turbines," Applied Energy, Elsevier, vol. 230(C), pages 1230-1241.
    9. Afef Fekih & Saleh Mobayen & Chih-Chiang Chen, 2021. "Adaptive Robust Fault-Tolerant Control Design for Wind Turbines Subject to Pitch Actuator Faults," Energies, MDPI, vol. 14(6), pages 1-13, March.
    10. Yao Liu & Lin Guan & Fang Guo & Jianping Zheng & Jianfu Chen & Chao Liu & Josep M. Guerrero, 2019. "A Reactive Power-Voltage Control Strategy of an AC Microgrid Based on Adaptive Virtual Impedance," Energies, MDPI, vol. 12(16), pages 1-15, August.
    11. Lei, Hang & Su, Jie & Bao, Yan & Chen, Yaoran & Han, Zhaolong & Zhou, Dai, 2019. "Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms," Energy, Elsevier, vol. 166(C), pages 471-489.
    12. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    13. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    14. Janusz Baran & Andrzej Jąderko, 2020. "An MPPT Control of a PMSG-Based WECS with Disturbance Compensation and Wind Speed Estimation," Energies, MDPI, vol. 13(23), pages 1-20, December.
    15. Li, Qing’an & Xu, Jianzhong & Kamada, Yasunari & Takao, Maeda & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2020. "Experimental investigations of airfoil surface flow of a horizontal axis wind turbine with LDV measurements," Energy, Elsevier, vol. 191(C).
    16. Lin, Zhongwei & Chen, Zhenyu & Liu, Jizhen & Wu, Qiuwei, 2019. "Coordinated mechanical loads and power optimization of wind energy conversion systems with variable-weight model predictive control strategy," Applied Energy, Elsevier, vol. 236(C), pages 307-317.
    17. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    18. Yuan, Yuan & Chen, Xu & Tang, J., 2020. "Multivariable robust blade pitch control design to reject periodic loads on wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 329-341.
    19. Xiaobing Kong & Lele Ma & Xiangjie Liu & Mohamed Abdelkarim Abdelbaky & Qian Wu, 2020. "Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions," Energies, MDPI, vol. 13(1), pages 1-21, January.
    20. Li, Jianshen & Wang, Shuangxin, 2021. "Dual multivariable model-free adaptive individual pitch control for load reduction in wind turbines with actuator faults," Renewable Energy, Elsevier, vol. 174(C), pages 293-304.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:131:y:2019:i:c:p:549-562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.