IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v118y2017icp1-17.html
   My bibliography  Save this article

Parametric study on catalytic tri-reforming of methane for syngas production

Author

Listed:
  • Chein, Rei-Yu
  • Wang, Chien-Yu
  • Yu, Ching-Tsung

Abstract

A two-dimensional numerical model for syngas production from tri-reforming of methane (TRM) in adiabatic tubular fixed-bed reactors was established. From the results obtained, it was found that reactant must be preheated to certain temperatures for TRM activation. Although the delay factor accounting for the varying catalytic bed activities produced different temperature and species mole fraction profiles in the reactor upstream, the reactor performance was delay factor independent if the reactor outlet results were used because nearly identical temperature and species mole fraction variations were obtained at the reactor downstream. The numerical results also indicated that reverse water-gas shift reaction plays an important role for H2 and CO yields. With higher O2 in reactant, high temperature resulted, leading to lower H2/CO ratio. The absence of H2O in the reactant caused dry reforming of methane as the dominant reaction, resulting in H2/CO ratio close to unity. With the absence of CO2 in the reactant, steam reforming of methane was the dominant reaction, resulting in H2/CO ratio close to 3. Using flue gas from combustion as TRM feedstock, it was found that H2/CO ratio was enhanced using lower CH4 amount in reactant. High-temperature flue gas was suggested for TRM for the activation requirement.

Suggested Citation

  • Chein, Rei-Yu & Wang, Chien-Yu & Yu, Ching-Tsung, 2017. "Parametric study on catalytic tri-reforming of methane for syngas production," Energy, Elsevier, vol. 118(C), pages 1-17.
  • Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:1-17
    DOI: 10.1016/j.energy.2016.11.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216318047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Halmann, M. & Steinfeld, A., 2006. "Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide," Energy, Elsevier, vol. 31(15), pages 3171-3185.
    2. Usman, Muhammad & Wan Daud, W.M.A. & Abbas, Hazzim F., 2015. "Dry reforming of methane: Influence of process parameters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 710-744.
    3. Singha, Rajib Kumar & Shukla, Astha & Yadav, Aditya & Adak, Shubhadeep & Iqbal, Zafar & Siddiqui, Nazia & Bal, Rajaram, 2016. "Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni–ZrO2 catalyst," Applied Energy, Elsevier, vol. 178(C), pages 110-125.
    4. Arab Aboosadi, Z. & Jahanmiri, A.H. & Rahimpour, M.R., 2011. "Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method," Applied Energy, Elsevier, vol. 88(8), pages 2691-2701, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    2. Chein, Rei-Yu & Lu, Cheng-Yang & Chen, Wei-Hsin, 2022. "Syngas production via chemical looping reforming using methane-based feed and NiO/Al2O3 oxygen carrier," Energy, Elsevier, vol. 250(C).
    3. Rei-Yu Chein & Wen-Hwai Hsu, 2018. "Analysis of Syngas Production from Biogas via the Tri-Reforming Process," Energies, MDPI, vol. 11(5), pages 1-18, April.
    4. Henrik Von Storch & Sonja Becker-Hardt & Christian Sattler, 2018. "(Solar) Mixed Reforming of Methane: Potential and Limits in Utilizing CO 2 as Feedstock for Syngas Production—A Thermodynamic Analysis," Energies, MDPI, vol. 11(10), pages 1-14, September.
    5. Ray, Debjyoti & Nepak, Devadutta & Vinodkumar, T. & Subrahmanyam, Ch., 2019. "g-C3N4 promoted DBD plasma assisted dry reforming of methane," Energy, Elsevier, vol. 183(C), pages 630-638.
    6. Samira Soleimani & Markus Lehner, 2022. "Tri-Reforming of Methane: Thermodynamics, Operating Conditions, Reactor Technology and Efficiency Evaluation—A Review," Energies, MDPI, vol. 15(19), pages 1-40, September.
    7. Rosha, Pali & Mohapatra, Saroj Kumar & Mahla, Sunil Kumar & Dhir, Amit, 2019. "Hydrogen enrichment of biogas via dry and autothermal-dry reforming with pure nickel (Ni) nanoparticle," Energy, Elsevier, vol. 172(C), pages 733-739.
    8. Wachter, Philipp & Gaber, Christian & Demuth, Martin & Hochenauer, Christoph, 2020. "Experimental investigation of tri-reforming on a stationary, recuperative TCR-reformer applied to an oxy-fuel combustion of natural gas, using a Ni-catalyst," Energy, Elsevier, vol. 212(C).
    9. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Hochenauer, Christoph, 2018. "An experimental study of a thermochemical regeneration waste heat recovery process using a reformer unit," Energy, Elsevier, vol. 155(C), pages 381-391.
    10. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Schroettner, Hartmuth & Fitzek, Harald & Hochenauer, Christoph, 2019. "Experimental investigation of thermochemical regeneration using oxy-fuel exhaust gases," Applied Energy, Elsevier, vol. 236(C), pages 1115-1124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Schroettner, Hartmuth & Fitzek, Harald & Hochenauer, Christoph, 2019. "Experimental investigation of thermochemical regeneration using oxy-fuel exhaust gases," Applied Energy, Elsevier, vol. 236(C), pages 1115-1124.
    2. Cao, Pengfei & Adegbite, Stephen & Zhao, Haitao & Lester, Edward & Wu, Tao, 2018. "Tuning dry reforming of methane for F-T syntheses: A thermodynamic approach," Applied Energy, Elsevier, vol. 227(C), pages 190-197.
    3. Samira Soleimani & Markus Lehner, 2022. "Tri-Reforming of Methane: Thermodynamics, Operating Conditions, Reactor Technology and Efficiency Evaluation—A Review," Energies, MDPI, vol. 15(19), pages 1-40, September.
    4. Chung, Wei-Chieh & Chang, Moo-Been, 2016. "Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 13-31.
    5. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    6. Al-Fatesh, Ahmed Sadeq & Hanan atia, & Ibrahim, Ahmed Aidid & Fakeeha, Anis Hamza & Singh, Sunit Kumar & Labhsetwar, Nitin K. & Shaikh, Hamid & Qasim, Shamsudeen O., 2019. "CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst," Renewable Energy, Elsevier, vol. 140(C), pages 658-667.
    7. Chen, Wei-Hsin & Hsu, Chih-Liang & Du, Shan-Wen, 2015. "Thermodynamic analysis of the partial oxidation of coke oven gas for indirect reduction of iron oxides in a blast furnace," Energy, Elsevier, vol. 86(C), pages 758-771.
    8. Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Yu, Fangyong & Xiao, Jie & Zhang, Yapeng & Cai, Weizi & Xie, Yongmin & Yang, Naitao & Liu, Jiang & Liu, Meilin, 2019. "New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation," Applied Energy, Elsevier, vol. 256(C).
    10. Rahimpour, Mohammad Reza & Jafari, Mitra & Iranshahi, Davood, 2013. "Progress in catalytic naphtha reforming process: A review," Applied Energy, Elsevier, vol. 109(C), pages 79-93.
    11. Yih-Hang Chen & David Shan-Hill Wong & Ya-Chien Chen & Chao-Min Chang & Hsuan Chang, 2019. "Design and Performance Comparison of Methanol Production Processes with Carbon Dioxide Utilization," Energies, MDPI, vol. 12(22), pages 1-18, November.
    12. Chein, Rei-Yu & Lu, Cheng-Yang & Chen, Wei-Hsin, 2022. "Syngas production via chemical looping reforming using methane-based feed and NiO/Al2O3 oxygen carrier," Energy, Elsevier, vol. 250(C).
    13. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
    14. Ha Jin Kim & Young Nam Chun, 2020. "Conversion of Biogas to Renewable Energy by Microwave Reforming," Energies, MDPI, vol. 13(16), pages 1-11, August.
    15. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    16. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Chen, Xue & Wang, Fuqiang & Yan, Xuewei & Han, Yafen & Cheng, Ziming & Jie, Zhu, 2018. "Thermochemical performance of solar driven CO2 reforming of methane in volumetric reactor with gradual foam structure," Energy, Elsevier, vol. 151(C), pages 545-555.
    18. Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
    19. Wu, Wei & Yang, Hsiao-Tung & Hwang, Jenn-Jiang, 2014. "Conceptual design of syngas production systems with almost net-zero carbon dioxide emissions," Energy, Elsevier, vol. 74(C), pages 753-761.
    20. Chein, Rei-Yu & Yu, Ching-Tsung, 2017. "Thermodynamic equilibrium analysis of water-gas shift reaction using syngases-effect of CO2 and H2S contents," Energy, Elsevier, vol. 141(C), pages 1004-1018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.