IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v144y2021ics1364032121002318.html
   My bibliography  Save this article

Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom

Author

Listed:
  • Baena-Moreno, Francisco M.
  • Sebastia-Saez, Daniel
  • Pastor-Pérez, Laura
  • Reina, Tomas Ramirez

Abstract

The UK faces unprecedented environmental challenges which require urgent action. The promotion of renewable energy sources is a promising solution to tackle these challenges. Among these, syngas production from biogas via dry reforming of methane shows great potential as a green alternative to meet global environmental goals. The purpose of this work is to estimate the potential of syngas production from biogas in the UK and its profitability. To estimate the syngas production, we present an overview of methane dry reforming to syngas. This analysis reveals that nickel/alumina catalysts are the most popular choice for the mentioned reaction. Afterwards, the potential biogas production in the UK is obtained. Both set of data are subsequently combined to estimate the potential for syngas production from biomass in the UK. A techno-economic analysis is performed to estimate the syngas price to reach profitability. This analysis reveals syngas prices ranging from 1.15 to 1.56 €/m3 to overcome production costs, which is higher than producing syngas from traditional fossil fuels. Further analysis has also been conducted to estimate the production of different utilisation routes for said syngas including biofuel, methanol and electricity.

Suggested Citation

  • Baena-Moreno, Francisco M. & Sebastia-Saez, Daniel & Pastor-Pérez, Laura & Reina, Tomas Ramirez, 2021. "Analysis of the potential for biogas upgrading to syngas via catalytic reforming in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002318
    DOI: 10.1016/j.rser.2021.110939
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121002318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ail, Snehesh Shivananda & Dasappa, S., 2016. "Biomass to liquid transportation fuel via Fischer Tropsch synthesis – Technology review and current scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 267-286.
    2. Foxon, Timothy J., 2013. "Transition pathways for a UK low carbon electricity future," Energy Policy, Elsevier, vol. 52(C), pages 10-24.
    3. Asam, Zaki-ul-Zaman & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Rafique, Rashad & Kiely, Ger & Murphy, Jerry D., 2011. "How can we improve biomethane production per unit of feedstock in biogas plants?," Applied Energy, Elsevier, vol. 88(6), pages 2013-2018, June.
    4. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    5. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
    6. Baena-Moreno, Francisco M. & Rodríguez-Galán, Mónica & Vega, Fernando & Reina, T.R. & Vilches, Luis F. & Navarrete, Benito, 2019. "Converting CO2 from biogas and MgCl2 residues into valuable magnesium carbonate: A novel strategy for renewable energy production," Energy, Elsevier, vol. 180(C), pages 457-464.
    7. Alptekin, Ertan & Canakci, Mustafa, 2008. "Determination of the density and the viscosities of biodiesel–diesel fuel blends," Renewable Energy, Elsevier, vol. 33(12), pages 2623-2630.
    8. Usman, Muhammad & Wan Daud, W.M.A. & Abbas, Hazzim F., 2015. "Dry reforming of methane: Influence of process parameters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 710-744.
    9. World Bank, 2015. "World Development Indicators 2015," World Bank Publications - Books, The World Bank Group, number 21634.
    10. Zhang, Cunsheng & Su, Haijia & Baeyens, Jan & Tan, Tianwei, 2014. "Reviewing the anaerobic digestion of food waste for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 383-392.
    11. Nolan, P. & Luostarinen, S. & Doyle, E.M. & O'Kiely, P., 2016. "Anaerobic digestion of perennial ryegrass prepared by cryogenic freezing versus thermal drying methods, using contrasting in vitro batch digestion systems," Renewable Energy, Elsevier, vol. 87(P1), pages 273-278.
    12. Rao, M. S. & Singh, S. P. & Singh, A. K. & Sodha, M. S., 2000. "Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage," Applied Energy, Elsevier, vol. 66(1), pages 75-87, May.
    13. Ramos-Suárez, J.L. & Ritter, A. & Mata González, J. & Camacho Pérez, A., 2019. "Biogas from animal manure: A sustainable energy opportunity in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 137-150.
    14. Estelle le Saché & Sarah Johnson & Laura Pastor-Pérez & Bahman Amini Horri & Tomas R. Reina, 2019. "Biogas Upgrading Via Dry Reforming Over a Ni-Sn/CeO 2 -Al 2 O 3 Catalyst: Influence of the Biogas Source," Energies, MDPI, vol. 12(6), pages 1-14, March.
    15. Abdulrasheed, Abdulrahman & Jalil, Aishah Abdul & Gambo, Yahya & Ibrahim, Maryam & Hambali, Hambali Umar & Shahul Hamid, Muhamed Yusuf, 2019. "A review on catalyst development for dry reforming of methane to syngas: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 175-193.
    16. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    17. Aramouni, Nicolas Abdel Karim & Touma, Jad G. & Tarboush, Belal Abu & Zeaiter, Joseph & Ahmad, Mohammad N., 2018. "Catalyst design for dry reforming of methane: Analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2570-2585.
    18. Rotunno, Paolo & Lanzini, Andrea & Leone, Pierluigi, 2017. "Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel," Renewable Energy, Elsevier, vol. 102(PB), pages 417-432.
    19. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    20. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Jiang, Lanlan & Chen, Bingbing & Song, Yongchen, 2023. "Study on the micro-macro kinetic and amino acid-enhanced separation of CO2-CH4 via sII hydrate," Renewable Energy, Elsevier, vol. 218(C).
    2. Gianluigi Lo Basso & Lorenzo Mario Pastore & Livio de Santoli, 2022. "Power-to-Methane to Integrate Renewable Generation in Urban Energy Districts," Energies, MDPI, vol. 15(23), pages 1-17, December.
    3. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Francisco M. Baena-Moreno & Isabel Malico & Isabel Paula Marques, 2021. "Promoting Sustainability: Wastewater Treatment Plants as a Source of Biomethane in Regions Far from a High-Pressure Grid. A Real Portuguese Case Study," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    5. Wang, R.Q. & Jiang, L. & Wang, Y.D. & Font-Palma, C. & Skoulou, V. & Roskilly, A.P., 2024. "Woody biomass waste derivatives in decarbonised blast furnace ironmaking process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ziwei & Lin, Qian & Li, Min & Cao, Jianxin & Liu, Fei & Pan, Hongyan & Wang, Zhigang & Kawi, Sibudjing, 2020. "Recent advances in process and catalyst for CO2 reforming of methane," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).
    3. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Senghor, A. & Dioh, R.M.N. & Müller, C. & Youm, I., 2017. "Cereal crops for biogas production: A review of possible impact of elevated CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 548-554.
    5. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    6. Al-Fatesh, Ahmed Sadeq & Hanan atia, & Ibrahim, Ahmed Aidid & Fakeeha, Anis Hamza & Singh, Sunit Kumar & Labhsetwar, Nitin K. & Shaikh, Hamid & Qasim, Shamsudeen O., 2019. "CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst," Renewable Energy, Elsevier, vol. 140(C), pages 658-667.
    7. Chengyang Zhang & Renkun Zhang & Hui Liu & Qinhong Wei & Dandan Gong & Liuye Mo & Hengcong Tao & Sha Cui & Luhui Wang, 2020. "One-Step Synthesis of Highly Dispersed and Stable Ni Nanoparticles Confined by CeO 2 on SiO 2 for Dry Reforming of Methane," Energies, MDPI, vol. 13(22), pages 1-12, November.
    8. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    9. Yih-Hang Chen & David Shan-Hill Wong & Ya-Chien Chen & Chao-Min Chang & Hsuan Chang, 2019. "Design and Performance Comparison of Methanol Production Processes with Carbon Dioxide Utilization," Energies, MDPI, vol. 12(22), pages 1-18, November.
    10. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    11. Arslan Mazhar & Asif Hussain Khoja & Abul Kalam Azad & Faisal Mushtaq & Salman Raza Naqvi & Sehar Shakir & Muhammad Hassan & Rabia Liaquat & Mustafa Anwar, 2021. "Performance Analysis of TiO 2 -Modified Co/MgAl 2 O 4 Catalyst for Dry Reforming of Methane in a Fixed Bed Reactor for Syngas (H 2 , CO) Production," Energies, MDPI, vol. 14(11), pages 1-20, June.
    12. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Zain, Munirah Md & Mohamed, Abdul Rahman, 2018. "An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 56-63.
    14. Moioli, Emanuele & Schildhauer, Tilman, 2022. "Negative CO2 emissions from flexible biofuel synthesis: Concepts, potentials, technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Touahra, Fouzia & Chebout, Redouane & Lerari, Djahida & Halliche, Djamila & Bachari, Khaldoun, 2019. "Role of the nanoparticles of Cu-Co alloy derived from perovskite in dry reforming of methane," Energy, Elsevier, vol. 171(C), pages 465-474.
    16. Muhamed Rasit Atelge & Halil Senol & Mohammed Djaafri & Tulin Avci Hansu & David Krisa & Abdulaziz Atabani & Cigdem Eskicioglu & Hamdi Muratçobanoğlu & Sebahattin Unalan & Slimane Kalloum & Nuri Azbar, 2021. "A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes," Sustainability, MDPI, vol. 13(20), pages 1-39, October.
    17. Abdulrasheed, Abdulrahman & Jalil, Aishah Abdul & Gambo, Yahya & Ibrahim, Maryam & Hambali, Hambali Umar & Shahul Hamid, Muhamed Yusuf, 2019. "A review on catalyst development for dry reforming of methane to syngas: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 175-193.
    18. Jung, Sungyup & Lee, Jechan & Moon, Deok Hyun & Kim, Ki-Hyun & Kwon, Eilhann E., 2021. "Upgrading biogas into syngas through dry reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    20. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.