IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v31y2006i15p3171-3185.html
   My bibliography  Save this article

Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide

Author

Listed:
  • Halmann, M.
  • Steinfeld, A.

Abstract

Flue gases from coal, gas, or oil-fired power stations, as well as from several heavy industries, such as the production of iron, lime and cement, are major anthropogenic sources of global CO2 emissions. The newly proposed process for syngas production based on the tri-reforming of such flue gases with natural gas could be an important route for CO2 emission avoidance. In addition, by combining the carbothermic reduction of iron oxide with the partial oxidation of the carbon source, an overall thermoneutral process can be designed for the co-production of iron and syngas rich in CO. Water-gas shift (WGS) of CO to H2 enables the production of useful syngas. The reaction process heat, or the conditions for thermoneutrality, are derived by thermochemical equilibrium calculations. The thermodynamic constraints are determined for the production of syngas suitable for methanol, hydrogen, or ammonia synthesis. The environmental and economic consequences are assessed for large-scale commercial production of these chemical commodities. Preliminary evaluations with natural gas, coke, or coal as carbon source indicate that such combined processes should be economically competitive, as well as promising significant fuel saving and CO2 emission avoidance. The production of ammonia in the above processes seems particularly attractive, as it consumes the nitrogen in the flue gases.

Suggested Citation

  • Halmann, M. & Steinfeld, A., 2006. "Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide," Energy, Elsevier, vol. 31(15), pages 3171-3185.
  • Handle: RePEc:eee:energy:v:31:y:2006:i:15:p:3171-3185
    DOI: 10.1016/j.energy.2006.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206000636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leites, I.L. & Sama, D.A. & Lior, N., 2003. "The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes," Energy, Elsevier, vol. 28(1), pages 55-97.
    2. Jean-Baptiste, Philippe & Ducroux, Rene, 2003. "Energy policy and climate change," Energy Policy, Elsevier, vol. 31(2), pages 155-166, January.
    3. Steinfeld, A. & Thompson, G., 1994. "Solar combined thermochemical processes for CO2 mitigation in the iron, cement, and syngas industries," Energy, Elsevier, vol. 19(10), pages 1077-1081.
    4. Werder, Miriam & Steinfeld, Aldo, 2000. "Life cycle assessment of the conventional and solar thermal production of zinc and synthesis gas," Energy, Elsevier, vol. 25(5), pages 395-409.
    5. Halmann, M. & Frei, A. & Steinfeld, A., 2002. "Thermo-neutral production of metals and hydrogen or methanol by the combined reduction of the oxides of zinc or iron with partial oxidation of hydrocarbons," Energy, Elsevier, vol. 27(12), pages 1069-1084.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Wei-Hsin & Hsu, Chih-Liang & Du, Shan-Wen, 2015. "Thermodynamic analysis of the partial oxidation of coke oven gas for indirect reduction of iron oxides in a blast furnace," Energy, Elsevier, vol. 86(C), pages 758-771.
    2. Chein, Rei-Yu & Wang, Chien-Yu & Yu, Ching-Tsung, 2017. "Parametric study on catalytic tri-reforming of methane for syngas production," Energy, Elsevier, vol. 118(C), pages 1-17.
    3. Wu, Wei & Yang, Hsiao-Tung & Hwang, Jenn-Jiang, 2014. "Conceptual design of syngas production systems with almost net-zero carbon dioxide emissions," Energy, Elsevier, vol. 74(C), pages 753-761.
    4. Engin Kocaturk & Tufan Salan & Orhan Ozcelik & Mehmet Hakkı Alma & Zeki Candan, 2023. "Recent Advances in Lignin-Based Biofuel Production," Energies, MDPI, vol. 16(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halmann, M. & Steinfeld, A., 2006. "Production of lime, hydrogen, and methanol by the thermo-neutral combined calcination of limestone with partial oxidation of natural gas or coal," Energy, Elsevier, vol. 31(10), pages 1533-1541.
    2. Halmann, M. & Frei, A. & Steinfeld, A., 2007. "Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation," Energy, Elsevier, vol. 32(12), pages 2420-2427.
    3. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    4. Toghyani, Mahboubeh & Rahimi, Amir, 2015. "Exergy analysis of an industrial unit of catalyst regeneration based on the results of modeling and simulation," Energy, Elsevier, vol. 91(C), pages 1049-1056.
    5. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    6. Chien-Chi Lin & Chih-Ming Dong, 2023. "Exploring Consumers’ Purchase Intention on Energy-Efficient Home Appliances: Integrating the Theory of Planned Behavior, Perceived Value Theory, and Environmental Awareness," Energies, MDPI, vol. 16(6), pages 1-16, March.
    7. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    8. Voicu-Teodor Muica & Alexandru Ozunu & Zoltàn Török, 2021. "Comparative Life Cycle Impact Assessment between the Productions of Zinc from Conventional Concentrates versus Waelz Oxides Obtained from Slags," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    9. Khoa, T.D. & Shuhaimi, M. & Hashim, H. & Panjeshahi, M.H., 2010. "Optimal design of distillation column using three dimensional exergy analysis curves," Energy, Elsevier, vol. 35(12), pages 5309-5319.
    10. Enrico Sciubba, 2014. "A Critical Interpretation and Quantitative Extension of the Sama-Szargut Second Law Rules in an Extended Exergy Perspective," Energies, MDPI, vol. 7(8), pages 1-17, August.
    11. Geuzebroek, F.H. & Schneiders, L.H.J.M. & Kraaijveld, G.J.C. & Feron, P.H.M., 2004. "Exergy analysis of alkanolamine-based CO2 removal unit with AspenPlus," Energy, Elsevier, vol. 29(9), pages 1241-1248.
    12. Joshua M. Pearce & Richard Parncutt, 2023. "Quantifying Global Greenhouse Gas Emissions in Human Deaths to Guide Energy Policy," Energies, MDPI, vol. 16(16), pages 1-20, August.
    13. Amin, Sakib & Jamasb, Tooraj & Llorca, Manuel & Marsiliani, Laura & Renström, Thomas I., 2022. "Decarbonisation policies and energy price reforms in Bangladesh," Energy Policy, Elsevier, vol. 170(C).
    14. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
    15. Ertesvåg, Ivar S. & Madejski, Paweł & Ziółkowski, Paweł & Mikielewicz, Dariusz, 2023. "Exergy analysis of a negative CO2 emission gas power plant based on water oxy-combustion of syngas from sewage sludge gasification and CCS," Energy, Elsevier, vol. 278(C).
    16. Ghannadzadeh, Ali & Thery-Hetreux, Raphaële & Baudouin, Olivier & Baudet, Philippe & Floquet, Pascal & Joulia, Xavier, 2012. "General methodology for exergy balance in ProSimPlus® process simulator," Energy, Elsevier, vol. 44(1), pages 38-59.
    17. Hacisalihoglu, Bilge, 2008. "Turkey's natural gas policy," Energy Policy, Elsevier, vol. 36(6), pages 1867-1872, June.
    18. Ertesvåg, Ivar S. & Kvamsdal, Hanne M. & Bolland, Olav, 2005. "Exergy analysis of a gas-turbine combined-cycle power plant with precombustion CO2 capture," Energy, Elsevier, vol. 30(1), pages 5-39.
    19. Janos Szlavik & Maria Csete, 2012. "Climate and Energy Policy in Hungary," Energies, MDPI, vol. 5(2), pages 1-24, February.
    20. Enzo Dalmazzo-Bermejo & Bárbara Valenzuela-Klagges & Luis Espinoza-Brito, 2017. "Producción de energía renovable no tradicional en América Latina: economía y políticas públicas," Apuntes. Revista de ciencias sociales, Fondo Editorial, Universidad del Pacífico, vol. 44(81), pages 67-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:31:y:2006:i:15:p:3171-3185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.