IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v151y2018icp545-555.html
   My bibliography  Save this article

Thermochemical performance of solar driven CO2 reforming of methane in volumetric reactor with gradual foam structure

Author

Listed:
  • Chen, Xue
  • Wang, Fuqiang
  • Yan, Xuewei
  • Han, Yafen
  • Cheng, Ziming
  • Jie, Zhu

Abstract

Solar driven CO2 reforming of methane has attracted increasing interest, due to the greenhouse effect and the depletion of fossil fuel energy. The design of foam structure parameters in volumetric solar reactor significantly affects the transport phenomena and overall reforming performance. A numerical model is developed in this study, coupling the conduction, convection and radiative heat transfer with the chemical reaction kinetics. The radiative transfer in foam structure is solved by the modified P1 approximation, and local thermal non-equilibrium model is used to account for the temperature difference between the fluid and solid phases. The reforming process in solar reactors with gradual foam structure parameter (porosity and cell size) both in axial and radial directions is analyzed. Thermal and reforming performances in different configurations are compared in detail. The results indicate that the methane conversion almost increases gradually with the increasing of porosity and cell size for the reactor with uniform foam structure. The decreasing designs of structure parameter either in axial or radial direction have better performance than the increasing ones. Besides, the increasing and decreasing designs in radial direction have a noticeable difference in the mole fraction distribution of reactants and products from those in axial directions.

Suggested Citation

  • Chen, Xue & Wang, Fuqiang & Yan, Xuewei & Han, Yafen & Cheng, Ziming & Jie, Zhu, 2018. "Thermochemical performance of solar driven CO2 reforming of methane in volumetric reactor with gradual foam structure," Energy, Elsevier, vol. 151(C), pages 545-555.
  • Handle: RePEc:eee:energy:v:151:y:2018:i:c:p:545-555
    DOI: 10.1016/j.energy.2018.03.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421830495X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roldán, M.I. & Smirnova, O. & Fend, T. & Casas, J.L. & Zarza, E., 2014. "Thermal analysis and design of a volumetric solar absorber depending on the porosity," Renewable Energy, Elsevier, vol. 62(C), pages 116-128.
    2. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    3. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    4. Agrafiotis, Christos & von Storch, Henrik & Roeb, Martin & Sattler, Christian, 2014. "Solar thermal reforming of methane feedstocks for hydrogen and syngas production—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 656-682.
    5. Serra, Luis M. & Lozano, Miguel-Angel & Ramos, Jose & Ensinas, Adriano V. & Nebra, Silvia A., 2009. "Polygeneration and efficient use of natural resources," Energy, Elsevier, vol. 34(5), pages 575-586.
    6. An, Wei & Wu, Jinrui & Zhu, Tong & Zhu, Qunzhi, 2016. "Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter," Applied Energy, Elsevier, vol. 184(C), pages 197-206.
    7. Blumberg, Timo & Morosuk, Tatiana & Tsatsaronis, George, 2017. "Exergy-based evaluation of methanol production from natural gas with CO2 utilization," Energy, Elsevier, vol. 141(C), pages 2528-2539.
    8. Yu, Tao & Yuan, Qinyuan & Lu, Jianfeng & Ding, Jing & Lu, Yanling, 2017. "Thermochemical storage performances of methane reforming with carbon dioxide in tubular and semi-cavity reactors heated by a solar dish system," Applied Energy, Elsevier, vol. 185(P2), pages 1994-2004.
    9. Lu, Jianfeng & Chen, Yuan & Ding, Jing & Wang, Weilong, 2016. "High temperature energy storage performances of methane reforming with carbon dioxide in a tubular packed reactor," Applied Energy, Elsevier, vol. 162(C), pages 1473-1482.
    10. Usman, Muhammad & Wan Daud, W.M.A. & Abbas, Hazzim F., 2015. "Dry reforming of methane: Influence of process parameters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 710-744.
    11. Jörg Petrasch & James Klausner, 2012. "Integrated solar thermochemical cycles for energy storage and fuel production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(3), pages 347-361, November.
    12. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    13. Chen, Lingen & Shen, Xun & Xia, Shaojun & Sun, Fengrui, 2017. "Thermodynamic analyses for recovering residual heat of high-temperature basic oxygen gas (BOG) by the methane reforming with carbon dioxide reaction," Energy, Elsevier, vol. 118(C), pages 906-913.
    14. Pan, Z.H. & Zhao, C.Y., 2017. "Gas–solid thermochemical heat storage reactors for high-temperature applications," Energy, Elsevier, vol. 130(C), pages 155-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fuqiang & Shi, Xuhang & Zhang, Chuanxin & Cheng, Ziming & Chen, Xue, 2020. "Effects of non-uniform porosity on thermochemical performance of solar driven methane reforming," Energy, Elsevier, vol. 191(C).
    2. Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2019. "Three-dimensional CFD modelling and thermal performance analysis of porous volumetric receivers coupled to solar concentration systems," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Rosha, Pali & Mohapatra, Saroj Kumar & Mahla, Sunil Kumar & Dhir, Amit, 2019. "Hydrogen enrichment of biogas via dry and autothermal-dry reforming with pure nickel (Ni) nanoparticle," Energy, Elsevier, vol. 172(C), pages 733-739.
    4. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    5. Liu, Yun & Xie, Ling-tian & Shen, Wen-ran & Xu, Chao & Zhao, Bo-yang, 2023. "Relative flow direction modes and gradual porous parameters for radiation transport and interactions with thermochemical reaction in porous volumetric solar reactor," Renewable Energy, Elsevier, vol. 203(C), pages 612-621.
    6. Wu, Haifeng & Liu, Qibin & Xie, Gengxin & Guo, Shaopeng & Zheng, Jie & Su, Bosheng, 2020. "Performance investigation of a novel hybrid combined cooling, heating and power system with solar thermochemistry in different climate zones," Energy, Elsevier, vol. 190(C).
    7. Bai, Zhang & Liu, Qibin & Gong, Liang & Lei, Jing, 2019. "Application of a mid-/low-temperature solar thermochemical technology in the distributed energy system with cooling, heating and power production," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Zhu, Qibin & Xuan, Yimin, 2019. "Improving the performance of volumetric solar receivers with a spectrally selective gradual structure and swirling characteristics," Energy, Elsevier, vol. 172(C), pages 467-476.
    9. Lu, J.F. & Dong, Y.X. & Wang, Y.R. & Wang, W.L. & Ding, J., 2022. "High efficient thermochemical energy storage of methane reforming with carbon dioxide in cavity reactor with novel catalyst bed under concentrated sun simulator," Renewable Energy, Elsevier, vol. 188(C), pages 361-371.
    10. Li, Ziwei & Lin, Qian & Li, Min & Cao, Jianxin & Liu, Fei & Pan, Hongyan & Wang, Zhigang & Kawi, Sibudjing, 2020. "Recent advances in process and catalyst for CO2 reforming of methane," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Chen, Chen & Kong, Mingmin & Zhou, Shuiqing & Sepulveda, Abdon E. & Hong, Hui, 2020. "Energy storage efficiency optimization of methane reforming with CO2 reactors for solar thermochemical energy storage☆," Applied Energy, Elsevier, vol. 266(C).
    12. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    13. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Wang, Cui & Jin, Hui & Peng, Pai & Chen, Jia, 2019. "Thermodynamics and LCA analysis of biomass supercritical water gasification system using external recycle of liquid residual," Renewable Energy, Elsevier, vol. 141(C), pages 1117-1126.
    15. Wang, Yangjie & Li, Qiang & Xuan, Yimin, 2019. "Thermal and chemical reaction performance analyses of solar thermochemical volumetric receiver/reactor with nanofluid," Energy, Elsevier, vol. 189(C).
    16. Dong, Yan & Wang, Fuqiang & Zhang, Yaqi & Shi, Xuhang & Zhang, Aoyu & Shuai, Yong, 2022. "Experimental and numerical study on flow characteristic and thermal performance of macro-capsules phase change material with biomimetic oval structure," Energy, Elsevier, vol. 238(PB).
    17. Zhang, Hao & Shuai, Yong & Lougou, Bachirou Guene & Jiang, Boshu & Yang, Dazhi & Pan, Qinghui & Wang, Fuqiang & Huang, Xing, 2022. "Effects of foam structure on thermochemical characteristics of porous-filled solar reactor," Energy, Elsevier, vol. 239(PC).
    18. Shi, Xuhang & Song, Jintao & Cheng, Ziming & Liang, Huaxu & Dong, Yan & Wang, Fuqiang & Zhang, Wenjing, 2023. "Radiative intensity regulation to match energy conversion on demand in solar methane dry reforming to improve solar to fuel conversion efficiency," Renewable Energy, Elsevier, vol. 207(C), pages 436-446.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    2. Wang, Fuqiang & Shi, Xuhang & Zhang, Chuanxin & Cheng, Ziming & Chen, Xue, 2020. "Effects of non-uniform porosity on thermochemical performance of solar driven methane reforming," Energy, Elsevier, vol. 191(C).
    3. von Storch, Henrik & Roeb, Martin & Stadler, Hannes & Sattler, Christian & Bardow, André & Hoffschmidt, Bernhard, 2016. "On the assessment of renewable industrial processes: Case study for solar co-production of methanol and power," Applied Energy, Elsevier, vol. 183(C), pages 121-132.
    4. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Liu, Yun & Xie, Ling-tian & Shen, Wen-ran & Xu, Chao & Zhao, Bo-yang, 2023. "Relative flow direction modes and gradual porous parameters for radiation transport and interactions with thermochemical reaction in porous volumetric solar reactor," Renewable Energy, Elsevier, vol. 203(C), pages 612-621.
    6. Liu, Taixiu & Liu, Qibin & Lei, Jing & Sui, Jun & Jin, Hongguang, 2018. "Solar-clean fuel distributed energy system with solar thermochemistry and chemical recuperation," Applied Energy, Elsevier, vol. 225(C), pages 380-391.
    7. Yih-Hang Chen & David Shan-Hill Wong & Ya-Chien Chen & Chao-Min Chang & Hsuan Chang, 2019. "Design and Performance Comparison of Methanol Production Processes with Carbon Dioxide Utilization," Energies, MDPI, vol. 12(22), pages 1-18, November.
    8. Jin, Jian & Wang, Hongsheng & Shen, Yili & Shu, Ziyun & Liu, Taixiu & Li, Wenjia, 2023. "Thermodynamic analysis of methane to methanol through a two-step process driven by concentrated solar energy," Energy, Elsevier, vol. 273(C).
    9. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    11. Chintala, Venkateswarlu, 2018. "Production, upgradation and utilization of solar assisted pyrolysis fuels from biomass – A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 120-130.
    12. Wang, Mengyi & Chen, Li & He, Pu & Tao, Wen-Quan, 2019. "Numerical study and enhancement of Ca(OH)2/CaO dehydration process with porous channels embedded in reactors," Energy, Elsevier, vol. 181(C), pages 417-428.
    13. Fuqiang, Wang & Lanxin, Ma & Ziming, Cheng & Jianyu, Tan & Xing, Huang & Linhua, Liu, 2017. "Radiative heat transfer in solar thermochemical particle reactor: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 935-949.
    14. Tang, Xin-Yuan & Zhang, Kai-Ran & Yang, Wei-Wei & Dou, Pei-Yuan, 2023. "Integrated design of solar concentrator and thermochemical reactor guided by optimal solar radiation distribution," Energy, Elsevier, vol. 263(PB).
    15. Cao, Pengfei & Adegbite, Stephen & Zhao, Haitao & Lester, Edward & Wu, Tao, 2018. "Tuning dry reforming of methane for F-T syntheses: A thermodynamic approach," Applied Energy, Elsevier, vol. 227(C), pages 190-197.
    16. Zhu, Tao & Li, Qiang & Xuan, Yimin & Liu, Dong & Hong, Hui, 2019. "Performance investigation of a hybrid photovoltaics and mid-temperature methanol thermochemistry system," Applied Energy, Elsevier, vol. 256(C).
    17. Shi, Xuhang & Li, Chunzhe & Yang, Zhenning & Xu, Jie & Song, Jintao & Wang, Fuqiang & Shuai, Yong & Zhang, Wenjing, 2024. "Egg-tray-inspired concave foam structure on pore-scale space radiation regulation for enhancing photo-thermal-chemical synergistic conversion," Energy, Elsevier, vol. 297(C).
    18. Henrik Von Storch & Sonja Becker-Hardt & Christian Sattler, 2018. "(Solar) Mixed Reforming of Methane: Potential and Limits in Utilizing CO 2 as Feedstock for Syngas Production—A Thermodynamic Analysis," Energies, MDPI, vol. 11(10), pages 1-14, September.
    19. Zhang, Hao & Shuai, Yong & Lougou, Bachirou Guene & Jiang, Boshu & Wang, Fuqiang & Cheng, Ziming & Tan, Heping, 2020. "Effects of multilayer porous ceramics on thermochemical energy conversion and storage efficiency in solar dry reforming of methane reactor," Applied Energy, Elsevier, vol. 265(C).
    20. Wang, Yangjie & Li, Qiang & Xuan, Yimin, 2019. "Thermal and chemical reaction performance analyses of solar thermochemical volumetric receiver/reactor with nanofluid," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:151:y:2018:i:c:p:545-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.