IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v155y2018icp381-391.html
   My bibliography  Save this article

An experimental study of a thermochemical regeneration waste heat recovery process using a reformer unit

Author

Listed:
  • Gaber, Christian
  • Demuth, Martin
  • Prieler, René
  • Schluckner, Christoph
  • Hochenauer, Christoph

Abstract

This paper presents a thermochemical regenerative heat recovery process for utilizing the waste heat of oxy-fuel furnaces, with three significant modifications compared to current state-of-the-art reforming concepts. (I) Experimental tests with a reformer test rig were performed, in order to investigate the bi-reforming of methane into syngas by using water and carbon dioxide with a steam-to-carbon ratio of 0.5. The measured syngas concentrations were compared to calculated equilibrium values and carbon deposits were determined. A methane conversion rate of 95.3% was achieved. (II) Carbon deposits in a regenerator bed are usually burned with purge gases. In contrast to this procedure, oxygen was added to the fuel/exhaust gas mixture in order to cause tri-reforming of methane with a steam-to-carbon ratio of 0.4. The syngas concentrations were compared to equilibrium values and it was found, that tri-reforming significantly reduces carbon formation. A methane conversion rate of 96.7% was achieved. (III) Furthermore, reforming and regeneration cycles were coupled and it was found that the temperature profile within the TCR regenerator bed material varies greatly from that of a common regenerator. Regeneration with water and carbon dioxide was sufficient to eliminate all carbon deposits.

Suggested Citation

  • Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Hochenauer, Christoph, 2018. "An experimental study of a thermochemical regeneration waste heat recovery process using a reformer unit," Energy, Elsevier, vol. 155(C), pages 381-391.
  • Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:381-391
    DOI: 10.1016/j.energy.2018.04.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218307709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chein, Rei-Yu & Wang, Chien-Yu & Yu, Ching-Tsung, 2017. "Parametric study on catalytic tri-reforming of methane for syngas production," Energy, Elsevier, vol. 118(C), pages 1-17.
    2. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    3. Lambert, Jean & Sorin, Mikhail & Paris, Jean, 1997. "Analysis of oxygen-enriched combustion for steam methane reforming (SMR)," Energy, Elsevier, vol. 22(8), pages 817-825.
    4. Popov, S.K. & Svistunov, I.N. & Garyaev, A.B. & Serikov, E.A. & Temyrkanova, E.K., 2017. "The use of thermochemical recuperation in an industrial plant," Energy, Elsevier, vol. 127(C), pages 44-51.
    5. Singha, Rajib Kumar & Shukla, Astha & Yadav, Aditya & Adak, Shubhadeep & Iqbal, Zafar & Siddiqui, Nazia & Bal, Rajaram, 2016. "Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni–ZrO2 catalyst," Applied Energy, Elsevier, vol. 178(C), pages 110-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carminati, Hudson Bolsoni & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F., 2021. "Sustainable Gas-to-Wire via dry reforming of carbonated natural gas: Ionic-liquid pre-combustion capture and thermodynamic efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Pashchenko, Dmitry, 2019. "Combined methane reforming with a mixture of methane combustion products and steam over a Ni-based catalyst: An experimental and thermodynamic study," Energy, Elsevier, vol. 185(C), pages 573-584.
    3. Li, Xin & Zhang, Silong & Ye, Mai & Qin, Jiang & Bao, Wen & Cui, Naigang & Liu, Xiaoyong & Zhou, Chaoying, 2020. "Effect of enhanced heat transfer structures on the chemical recuperation process of advanced aero-engine," Energy, Elsevier, vol. 211(C).
    4. Pashchenko, Dmitry, 2019. "Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: A combined experimental and numerical investigation," Energy, Elsevier, vol. 166(C), pages 462-470.
    5. Pashchenko, Dmitry, 2022. "Natural gas reforming in thermochemical waste-heat recuperation systems: A review," Energy, Elsevier, vol. 251(C).
    6. Samira Soleimani & Markus Lehner, 2022. "Tri-Reforming of Methane: Thermodynamics, Operating Conditions, Reactor Technology and Efficiency Evaluation—A Review," Energies, MDPI, vol. 15(19), pages 1-40, September.
    7. Wachter, Philipp & Gaber, Christian & Demuth, Martin & Hochenauer, Christoph, 2020. "Experimental investigation of tri-reforming on a stationary, recuperative TCR-reformer applied to an oxy-fuel combustion of natural gas, using a Ni-catalyst," Energy, Elsevier, vol. 212(C).
    8. Pashchenko, Dmitry & Makarov, Ivan, 2021. "Carbon deposition in steam methane reforming over a Ni-based catalyst: Experimental and thermodynamic analysis," Energy, Elsevier, vol. 222(C).
    9. Pashchenko, Dmitry, 2020. "A heat recovery rate of the thermochemical waste-heat recuperation systems based on experimental prediction," Energy, Elsevier, vol. 198(C).
    10. Carminati, Hudson Bolsoni & de Medeiros, José Luiz & Moure, Gustavo Torres & Barbosa, Lara Costa & Araújo, Ofélia de Queiroz F., 2020. "Low-emission pre-combustion gas-to-wire via ionic-liquid [Bmim][NTf2] absorption with high-pressure stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Zhang, Huining & Zhou, Peiling & Yuan, Fei, 2021. "Effects of ladle lid or online preheating on heat preservation of ladle linings and temperature drop of molten steel," Energy, Elsevier, vol. 214(C).
    12. Pashchenko, Dmitry & Karpilov, Igor & Polyakov, Mikhail & Popov, Stanislav K., 2024. "Techno-economic evaluation of a thermochemical waste-heat recuperation system for industrial furnace application: Operating cost analysis," Energy, Elsevier, vol. 295(C).
    13. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Schroettner, Hartmuth & Fitzek, Harald & Hochenauer, Christoph, 2019. "Experimental investigation of thermochemical regeneration using oxy-fuel exhaust gases," Applied Energy, Elsevier, vol. 236(C), pages 1115-1124.
    14. Pashchenko, Dmitry, 2021. "Industrial furnaces with thermochemical waste-heat recuperation by coal gasification," Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaber, Christian & Demuth, Martin & Prieler, René & Schluckner, Christoph & Schroettner, Hartmuth & Fitzek, Harald & Hochenauer, Christoph, 2019. "Experimental investigation of thermochemical regeneration using oxy-fuel exhaust gases," Applied Energy, Elsevier, vol. 236(C), pages 1115-1124.
    2. Wachter, Philipp & Gaber, Christian & Demuth, Martin & Hochenauer, Christoph, 2020. "Experimental investigation of tri-reforming on a stationary, recuperative TCR-reformer applied to an oxy-fuel combustion of natural gas, using a Ni-catalyst," Energy, Elsevier, vol. 212(C).
    3. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    4. Pashchenko, Dmitry, 2019. "Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: A combined experimental and numerical investigation," Energy, Elsevier, vol. 166(C), pages 462-470.
    5. Pashchenko, Dmitry & Karpilov, Igor & Polyakov, Mikhail & Popov, Stanislav K., 2024. "Techno-economic evaluation of a thermochemical waste-heat recuperation system for industrial furnace application: Operating cost analysis," Energy, Elsevier, vol. 295(C).
    6. Pashchenko, Dmitry, 2018. "First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming," Energy, Elsevier, vol. 143(C), pages 478-487.
    7. Pashchenko, Dmitry, 2022. "Natural gas reforming in thermochemical waste-heat recuperation systems: A review," Energy, Elsevier, vol. 251(C).
    8. Samira Soleimani & Markus Lehner, 2022. "Tri-Reforming of Methane: Thermodynamics, Operating Conditions, Reactor Technology and Efficiency Evaluation—A Review," Energies, MDPI, vol. 15(19), pages 1-40, September.
    9. Pashchenko, Dmitry, 2024. "Ammonia fired gas turbines: Recent advances and future perspectives," Energy, Elsevier, vol. 290(C).
    10. Pashchenko, Dmitry, 2019. "Combined methane reforming with a mixture of methane combustion products and steam over a Ni-based catalyst: An experimental and thermodynamic study," Energy, Elsevier, vol. 185(C), pages 573-584.
    11. Pashchenko, Dmitry, 2020. "A heat recovery rate of the thermochemical waste-heat recuperation systems based on experimental prediction," Energy, Elsevier, vol. 198(C).
    12. Qiu, K. & Hayden, A.C.S., 2009. "Increasing the efficiency of radiant burners by using polymer membranes," Applied Energy, Elsevier, vol. 86(3), pages 349-354, March.
    13. Yu, Fangyong & Xiao, Jie & Zhang, Yapeng & Cai, Weizi & Xie, Yongmin & Yang, Naitao & Liu, Jiang & Liu, Meilin, 2019. "New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation," Applied Energy, Elsevier, vol. 256(C).
    14. Siavashi, Majid & Hosseini, Farzad & Talesh Bahrami, Hamid Reza, 2021. "A new design with preheating and layered porous ceramic for hydrogen production through methane steam reforming process," Energy, Elsevier, vol. 231(C).
    15. Chein, Rei-Yu & Lu, Cheng-Yang & Chen, Wei-Hsin, 2022. "Syngas production via chemical looping reforming using methane-based feed and NiO/Al2O3 oxygen carrier," Energy, Elsevier, vol. 250(C).
    16. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
    17. Zhou, Shengdong & Bai, Zhang & Li, Qi & Yuan, Yu & Wang, Shuoshuo, 2024. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Optimized recuperation regulation with syngas storage," Applied Energy, Elsevier, vol. 353(PB).
    18. Ha Jin Kim & Young Nam Chun, 2020. "Conversion of Biogas to Renewable Energy by Microwave Reforming," Energies, MDPI, vol. 13(16), pages 1-11, August.
    19. Francisco Jose Durán & Fernando Dorado & Luz Sanchez-Silva, 2020. "Exergetic and Economic Improvement for a Steam Methane-Reforming Industrial Plant: Simulation Tool," Energies, MDPI, vol. 13(15), pages 1-15, July.
    20. Cai, Lei & He, Tianzhi & Xiang, Yanlei & Guan, Yanwen, 2020. "Study on the reaction pathways of steam methane reforming for H2 production," Energy, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:155:y:2018:i:c:p:381-391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.