IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v88y2015icp801-820.html
   My bibliography  Save this article

Investigation of an integrated hydrogen production system based on nuclear and renewable energy sources: Comparative evaluation of hydrogen production options with a regenerative fuel cell system

Author

Listed:
  • Orhan, Mehmet F.
  • Babu, Binish S.

Abstract

Hydrogen has risen as a sustainable and efficient energy carrier option in reducing environmental pollution, and is seen as a potential solution for the current energy crisis. Hydrogen production via water decomposition is a potential process for direct utilization of nuclear thermal energy to increase efficiency and thereby facilitate energy savings. While many of the available renewable energy resources are limited due to their reliability, quality, quantity and density, nuclear energy has the potential to contribute a significant share of energy supply with very limited impacts to climate change. The proposed model in this study is an integrated hydrogen production system combining both nuclear and solar energy sources. This integrated system includes storage of hydrogen and its conversion to electricity by a regenerative fuel cell system when needed. There are many matured water splitting processes that can be linked with the nuclear and solar energy sources to decompose water to its constituents, among which is hydrogen. In this regard, a comparative study is carried out to evaluate an optimal and feasible hydrogen production/storage process with a regenerative fuel cell that can be linked to this integrated system. Studies conducted here on hydrogen production processes show the thermochemical water decomposition to be the better option for producing hydrogen, comparing to electrolysis, due to its high efficiencies and low costs. Energy and exergy efficiencies of various hydrogen production processes, and fuel cell systems are evaluated and compared. Also, a parametric study is conducted on these efficiencies to see the effect of various operating conditions.

Suggested Citation

  • Orhan, Mehmet F. & Babu, Binish S., 2015. "Investigation of an integrated hydrogen production system based on nuclear and renewable energy sources: Comparative evaluation of hydrogen production options with a regenerative fuel cell system," Energy, Elsevier, vol. 88(C), pages 801-820.
  • Handle: RePEc:eee:energy:v:88:y:2015:i:c:p:801-820
    DOI: 10.1016/j.energy.2015.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215007148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abanades, Stéphane & Charvin, Patrice & Flamant, Gilles & Neveu, Pierre, 2006. "Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy," Energy, Elsevier, vol. 31(14), pages 2805-2822.
    2. Charvin, Patrice & Abanades, Stéphane & Flamant, Gilles & Lemort, Florent, 2007. "Two-step water splitting thermochemical cycle based on iron oxide redox pair for solar hydrogen production," Energy, Elsevier, vol. 32(7), pages 1124-1133.
    3. Guo, L.J. & Zhao, L. & Jing, D.W. & Lu, Y.J. & Yang, H.H. & Bai, B.F. & Zhang, X.M. & Ma, L.J. & Wu, X.M., 2009. "Solar hydrogen production and its development in China," Energy, Elsevier, vol. 34(9), pages 1073-1090.
    4. Bozoglan, Elif & Midilli, Adnan & Hepbasli, Arif, 2012. "Sustainable assessment of solar hydrogen production techniques," Energy, Elsevier, vol. 46(1), pages 85-93.
    5. Momirlan, Magdalena & Muresan, L. & Sayigh, A.A.M. & Veziroglu, T.N., 1996. "The use of solar energy in hydrogen production," Renewable Energy, Elsevier, vol. 9(1), pages 1258-1261.
    6. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    7. Kazim, A & Veziroglu, T.N, 2001. "Utilization of solar–hydrogen energy in the UAE to maintain its share in the world energy market for the 21st century," Renewable Energy, Elsevier, vol. 24(2), pages 259-274.
    8. Koumi Ngoh, Simon & Njomo, Donatien, 2012. "An overview of hydrogen gas production from solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6782-6792.
    9. Carton, J.G. & Olabi, A.G., 2010. "Wind/hydrogen hybrid systems: Opportunity for Ireland’s wind resource to provide consistent sustainable energy supply," Energy, Elsevier, vol. 35(12), pages 4536-4544.
    10. Guo, L.J. & Zhao, L. & Jing, D.W. & Lu, Y.J. & Yang, H.H. & Bai, B.F. & Zhang, X.M. & Ma, L.J. & Wu, X.M., 2010. "Reprint of: Solar hydrogen production and its development in China," Energy, Elsevier, vol. 35(11), pages 4421-4438.
    11. Orhan, Mehmet F. & Dincer, Ibrahim & Rosen, Marc A. & Kanoglu, Mehmet, 2012. "Integrated hydrogen production options based on renewable and nuclear energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6059-6082.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
    2. Fan, Xiao-chao & Wang, Wei-qing & Shi, Rui-jing & Cheng, Zhi-jiang, 2017. "Hybrid pluripotent coupling system with wind and photovoltaic-hydrogen energy storage and the coal chemical industry in Hami, Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 950-960.
    3. Keipi, Tiina & Li, Tian & Løvås, Terese & Tolvanen, Henrik & Konttinen, Jukka, 2017. "Methane thermal decomposition in regenerative heat exchanger reactor: Experimental and modeling study," Energy, Elsevier, vol. 135(C), pages 823-832.
    4. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2022. "Assessment of a thin-electrolyte solid oxide cell for hydrogen production," Energy, Elsevier, vol. 243(C).
    5. Cho, Seolhee & Kim, Jiyong, 2019. "Multi-site and multi-period optimization model for strategic planning of a renewable hydrogen energy network from biomass waste and energy crops," Energy, Elsevier, vol. 185(C), pages 527-540.
    6. Benim, Ali Cemal & Pfeiffelmann, Björn & Ocłoń, Paweł & Taler, Jan, 2019. "Computational investigation of a lifted hydrogen flame with LES and FGM," Energy, Elsevier, vol. 173(C), pages 1172-1181.
    7. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wang, Danfeng & Wu, Qing, 2021. "Optimal design and techno-economic assessment of low-carbon hydrogen supply pathways for a refueling station located in Shanghai," Energy, Elsevier, vol. 237(C).
    8. Li, Kang-Ning & Yang, Chuan-Lu & Han, Yan-Xiao & Wang, Mei-Shan & Ma, Xiao-Guang & Wang, Li-Zhi, 2016. "Generating H2 from a H2O molecule by catalysis using a small Al6Cu cluster," Energy, Elsevier, vol. 106(C), pages 131-136.
    9. Xiao, Peng & Lee, Chia-fon & Wu, Han & Liu, Fushui, 2020. "Effects of hydrogen addition on the laminar methanol-air flame under different initial temperatures," Renewable Energy, Elsevier, vol. 154(C), pages 209-222.
    10. Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2014. "Comprehensive modeling of tubular solid oxide electrolysis cell for co-electrolysis of steam and carbon dioxide," Energy, Elsevier, vol. 70(C), pages 420-434.
    2. Luo, Yu & Shi, Yixiang & Li, Wenying & Cai, Ningsheng, 2015. "Dynamic electro-thermal modeling of co-electrolysis of steam and carbon dioxide in a tubular solid oxide electrolysis cell," Energy, Elsevier, vol. 89(C), pages 637-647.
    3. Yilmaz, Fatih & Balta, M. Tolga & Selbaş, Reşat, 2016. "A review of solar based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 171-178.
    4. Mohammadi, Amin & Mehrpooya, Mehdi, 2018. "A comprehensive review on coupling different types of electrolyzer to renewable energy sources," Energy, Elsevier, vol. 158(C), pages 632-655.
    5. Agrafiotis, Christos & Roeb, Martin & Sattler, Christian, 2015. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 254-285.
    6. Christopher L. Muhich & Brian D. Ehrhart & Ibraheam Al-Shankiti & Barbara J. Ward & Charles B. Musgrave & Alan W. Weimer, 2016. "A review and perspective of efficient hydrogen generation via solar thermal water splitting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 261-287, May.
    7. Nzihou, Ange & Flamant, Gilles & Stanmore, Brian, 2012. "Synthetic fuels from biomass using concentrated solar energy – A review," Energy, Elsevier, vol. 42(1), pages 121-131.
    8. Bozoglan, Elif & Midilli, Adnan & Hepbasli, Arif, 2012. "Sustainable assessment of solar hydrogen production techniques," Energy, Elsevier, vol. 46(1), pages 85-93.
    9. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    10. Kong, Hui & Hao, Yong & Jin, Hongguang, 2018. "Isothermal versus two-temperature solar thermochemical fuel synthesis: A comparative study," Applied Energy, Elsevier, vol. 228(C), pages 301-308.
    11. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    12. Wang, Wanrong & Ma, Yingjie & Maroufmashat, Azadeh & Zhang, Nan & Li, Jie & Xiao, Xin, 2022. "Optimal design of large-scale solar-aided hydrogen production process via machine learning based optimisation framework," Applied Energy, Elsevier, vol. 305(C).
    13. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    14. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    15. Song, Lee-hwa & Kang, Hyun Woo & Park, Seung Bin, 2012. "Thermally stable iron based redox catalysts for the thermo-chemical hydrogen generation from water," Energy, Elsevier, vol. 42(1), pages 313-320.
    16. Scozzari, R. & Santarelli, M., 2014. "Techno-economic analysis of a small size short range EES (electric energy storage) system for a PV (photovoltaic) plant serving a SME (small and medium enterprise) in a given regulatory context," Energy, Elsevier, vol. 71(C), pages 180-193.
    17. Zhao, Chen & Li, Baozhu & Zhang, Lu & Han, Yaru & Wu, Xiaoyu, 2023. "Novel optimal structure design and testing of air-cooled open-cathode proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 215(C).
    18. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    19. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Sun, Qian & Zou, Meishuai & Guo, Xiaoyan & Yang, Rongjie & Huang, Haitao & Huang, Peng & He, Xiangdong, 2015. "A study of hydrogen generation by reaction of an activated Mg–CoCl2 (magnesium–cobalt chloride) composite with pure water for portable applications," Energy, Elsevier, vol. 79(C), pages 310-314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:88:y:2015:i:c:p:801-820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.