Effect of variable compression ratio and equivalence ratio on performance, combustion and emission of hydrogen port injection SI engine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.122468
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Catapano, F. & Di Iorio, S. & Sementa, P. & Vaglieco, B.M., 2016. "Analysis of energy efficiency of methane and hydrogen-methane blends in a PFI/DI SI research engine," Energy, Elsevier, vol. 117(P2), pages 378-387.
- Kim, Joonsuk & Chun, Kwang Min & Song, Soonho & Baek, Hong-Kil & Lee, Seung Woo, 2018. "Hydrogen effects on the combustion stability, performance and emissions of a turbo gasoline direct injection engine in various air/fuel ratios," Applied Energy, Elsevier, vol. 228(C), pages 1353-1361.
- Singh, Sonal & Jain, Shikha & PS, Venkateswaran & Tiwari, Avanish K. & Nouni, Mansa R. & Pandey, Jitendra K. & Goel, Sanket, 2015. "Hydrogen: A sustainable fuel for future of the transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 623-633.
- He, Fengshuo & Li, Shuo & Yu, Xiumin & Du, Yaodong & Zuo, Xiongyinan & Dong, Wei & Sun, Ping & He, Ling, 2018. "Comparison study and synthetic evaluation of combined injection in a spark ignition engine with hydrogen-blended at lean burn condition," Energy, Elsevier, vol. 157(C), pages 1053-1062.
- Nuthan Prasad, B.S. & Pandey, Jayashish Kumar & Kumar, G.N., 2020. "Impact of changing compression ratio on engine characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline," Energy, Elsevier, vol. 191(C).
- Ji, Changwei & Wang, Shuofeng & Zhang, Bo, 2012. "Performance of a hybrid hydrogen–gasoline engine under various operating conditions," Applied Energy, Elsevier, vol. 97(C), pages 584-589.
- Zhao, Jianbiao & Ma, Fanhua & Xiong, Xingwang & Deng, Jiao & Wang, Lijun & Naeve, Nashay & Zhao, Shuli, 2013. "Effects of compression ratio on the combustion and emission of a hydrogen enriched natural gas engine under different excess air ratio," Energy, Elsevier, vol. 59(C), pages 658-665.
- Gong, Changming & Li, Zhaohui & Sun, Jingzhen & Liu, Fenghua, 2020. "Evaluation on combustion and lean-burn limitof a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection," Applied Energy, Elsevier, vol. 277(C).
- Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
- Wang, Shuofeng & Ji, Changwei & Zhang, Bo, 2010. "Effects of hydrogen addition and cylinder cutoff on combustion and emissions performance of a spark-ignited gasoline engine under a low operating condition," Energy, Elsevier, vol. 35(12), pages 4754-4760.
- Jhang, Syu-Ruei & Lin, Yuan-Chung & Chen, Kang-Shin & Lin, Sheng-Lun & Batterman, Stuart, 2020. "Evaluation of fuel consumption, pollutant emissions and well-to-wheel GHGs assessment from a vehicle operation fueled with bioethanol, gasoline and hydrogen," Energy, Elsevier, vol. 209(C).
- Diéguez, P.M. & Urroz, J.C. & Marcelino-Sádaba, S. & Pérez-Ezcurdia, A. & Benito-Amurrio, M. & Sáinz, D. & Gandía, L.M., 2014. "Experimental study of the performance and emission characteristics of an adapted commercial four-cylinder spark ignition engine running on hydrogen–methane mixtures," Applied Energy, Elsevier, vol. 113(C), pages 1068-1076.
- Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.
- Duan, Xiongbo & Li, Yangyang & Liu, Jingping & Guo, Genmiao & Fu, Jianqin & Zhang, Quanchang & Zhang, Shiheng & Liu, Weiqiang, 2019. "Experimental study the effects of various compression ratios and spark timing on performance and emission of a lean-burn heavy-duty spark ignition engine fueled with methane gas and hydrogen blends," Energy, Elsevier, vol. 169(C), pages 558-571.
- Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Cong, Xiaoyu & Liu, Xiaolong, 2016. "Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine," Energy, Elsevier, vol. 96(C), pages 118-126.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Enzo Galloni & Davide Lanni & Gustavo Fontana & Gabriele D’Antuono & Simone Stabile, 2022. "Performance Estimation of a Downsized SI Engine Running with Hydrogen," Energies, MDPI, vol. 15(13), pages 1-12, June.
- Tian, Ying & Han, Jin & Bu, Yu & Qin, Chuan, 2023. "Simulation and analysis of fire and pressure reducing valve damage in on-board liquid hydrogen system of heavy-duty fuel cell trucks," Energy, Elsevier, vol. 276(C).
- Baraiya, Nikhil A. & Ramanan, Vikram & Nagarajan, Baladandayuthapani & Vegad, Chetankumar S. & Chakravarthy, S.R., 2023. "Dynamic mode decomposition of syngas (H2/CO) flame during transition to high-frequency instability in turbulent combustor," Energy, Elsevier, vol. 263(PD).
- Pandey, Jayashish Kumar & Dinesh, M.H. & Kumar, G.N., 2023. "A comparative study of NOx mitigating techniques EGR and spark delay on combustion and NOx emission of ammonia/hydrogen and hydrogen fuelled SI engine," Energy, Elsevier, vol. 276(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gong, Changming & Li, Dong & Liu, Jiajun & Liu, Fenghua, 2024. "Computational study of excess air ratio impacts on performances of a spark-ignition H2/methanol dual-injection engine," Energy, Elsevier, vol. 289(C).
- Su, Teng & Ji, Changwei & Wang, Shuofeng & Shi, Lei & Yang, Jinxin & Cong, Xiaoyu, 2017. "Investigation on performance of a hydrogen-gasoline rotary engine at part load and lean conditions," Applied Energy, Elsevier, vol. 205(C), pages 683-691.
- Gong, Changming & Li, Dong & Liu, Jiajun & Liu, Fenghua, 2024. "Numerical evaluation of ignition timing influences on performance of a stratified-charge H2/methanol dual-injection automobile engine under lean-burn condition," Energy, Elsevier, vol. 290(C).
- Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effects of hydrogen assisted combustion of EBNOL IN SI engines under variable compression ratio and ignition timing," Energy, Elsevier, vol. 246(C).
- Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Ji, Changwei & Yang, Jinxin & Liu, Xiaolong & Wang, Shuofeng & Zhang, Bo & Wang, Du, 2016. "Enhancing the fuel economy and emissions performance of a gasoline engine-powered vehicle with idle elimination and hydrogen start," Applied Energy, Elsevier, vol. 182(C), pages 135-144.
- Kamil, Mohammed & Rahman, M.M., 2015. "Performance prediction of spark-ignition engine running on gasoline-hydrogen and methane-hydrogen blends," Applied Energy, Elsevier, vol. 158(C), pages 556-567.
- Gong, Changming & Li, Zhaohui & Sun, Jingzhen & Liu, Fenghua, 2020. "Evaluation on combustion and lean-burn limitof a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection," Applied Energy, Elsevier, vol. 277(C).
- Yin, Xiaojun & Sun, Nannan & Sun, Ting & Shen, Hongguang & Mehra, Roopesh Kumar & Liu, Junlong & Wang, Ying & Yang, Bo & Zeng, Ke, 2022. "Experimental investigation the effects of spark discharge characteristics on the heavy-duty spark ignition natural gas engine at low load condition," Energy, Elsevier, vol. 239(PC).
- Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Cong, Xiaoyu & Liu, Xiaolong, 2016. "Effect of CO2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine," Energy, Elsevier, vol. 96(C), pages 118-126.
- Huang, Lijuan & Wang, Yu & Li, Zongfa & Zhang, Liang & Yin, Yuchuan & Chen, Chao & Ren, Shaoran, 2021. "Experimental study on piloted ignition temperature and auto ignition temperature of heavy oils at high pressure," Energy, Elsevier, vol. 229(C).
- Gao, Jianbing & Zhang, Huijie & Li, Juxia & Wang, Yufeng & Tian, Guohong & Ma, Chaochen & Wang, Xiaochen, 2022. "Simulation on the effect of compression ratios on the performance of a hydrogen fueled opposed rotary piston engine," Renewable Energy, Elsevier, vol. 187(C), pages 428-439.
- Akram, M. Zuhaib, 2021. "Study of hydrogen impact on lean flammability limit and burning characteristics of a kerosene surrogate," Energy, Elsevier, vol. 231(C).
- Dinesh, M.H. & Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effect of parallel LPG fuelling in a methanol fuelled SI engine under variable compression ratio," Energy, Elsevier, vol. 239(PC).
- Shang, Zhen & Yu, Xiumin & Ren, Lei & Wei, Guowu & Li, Guanting & Li, Decheng & Li, Yinan, 2020. "Comparative study on effects of injection mode on combustion and emission characteristics of a combined injection n-butanol/gasoline SI engine with hydrogen direct injection," Energy, Elsevier, vol. 213(C).
- Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).
- Kim, Joonsuk & Chun, Kwang Min & Song, Soonho & Baek, Hong-Kil & Lee, Seung Woo, 2018. "Hydrogen effects on the combustion stability, performance and emissions of a turbo gasoline direct injection engine in various air/fuel ratios," Applied Energy, Elsevier, vol. 228(C), pages 1353-1361.
- Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
- Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
More about this item
Keywords
Hydrogen; Variable compression ratio; Variable equivalence ratio; Wide open throttle (WOT); Performance; Combustion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027171. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.