IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3722-d818947.html
   My bibliography  Save this article

Experimental, Kinetic Modeling and Morphologic Study of the Premixed Combustion of Hydrogen/Methane Mixtures

Author

Listed:
  • Miriam Reyes

    (Department of Energy and Fluid-Mechanics Engineering, University of Valladolid, Paseo del Cauce, 59, E-47011 Valladolid, Spain)

  • Rosaura Sastre

    (Department of Energy and Fluid-Mechanics Engineering, University of Valladolid, Paseo del Cauce, 59, E-47011 Valladolid, Spain)

  • Blanca Giménez

    (Department of Energy and Fluid-Mechanics Engineering, University of Valladolid, Paseo del Cauce, 59, E-47011 Valladolid, Spain)

  • Clara Sesma

    (Department of Energy and Fluid-Mechanics Engineering, University of Valladolid, Paseo del Cauce, 59, E-47011 Valladolid, Spain)

Abstract

In this work, an experimental study and kinetic characterization of the combustion process and a morphologic study of hydrogen/methane–air mixtures are presented. The experimental study was performed in an optical access cylindrical constant-volume combustion bomb. This bomb is equipped to register the instantaneous pressure during combustion and records the combustion images using the high-speed Schlieren optical technique. This provides straightforward information to compute the flame propagation speed and direct evidence of the apparition of cellularity on the flame front. Through the images of the combustion process, it is possible to conduct a morphological study of the process using a flame monitoring model. Simultaneously, by means of a two-zone thermodynamical model, with the temporal evolution of pressure as the main intake, significant parameters are determined during the combustion process of different fuels under premixed conditions: burning velocity, rate of combustion, burned and unburned temperature, burned mass fraction, and rate of heat release, among others. Experimental results are compared with kinetic modeling results obtained with the Cantera package using the Gri-Mech 3.0 kinetic mechanism. Results show that a greater percentage of hydrogen in the fuel mixture increases the burning velocity and the cellularity of the flame front surface. At the same time, leaner mixtures and higher equivalence ratios enhance the apparition of the cellularity onset in the flames. Burning velocity increases with the increase in the initial temperature and the fuel/air mixture equivalence ratio. All the results obtained were validated with other data from the literature.

Suggested Citation

  • Miriam Reyes & Rosaura Sastre & Blanca Giménez & Clara Sesma, 2022. "Experimental, Kinetic Modeling and Morphologic Study of the Premixed Combustion of Hydrogen/Methane Mixtures," Energies, MDPI, vol. 15(10), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3722-:d:818947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3722/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3722/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zuo-Yu Sun & Guo-Xiu Li & Hong-Meng Li & Yue Zhai & Zi-Hang Zhou, 2014. "Buoyant Unstable Behavior of Initially Spherical Lean Hydrogen-Air Premixed Flames," Energies, MDPI, vol. 7(8), pages 1-19, July.
    2. Li, Ruikang & Luo, Zhenmin & Wang, Tao & Cheng, Fangming & Lin, Haifei & Zhu, Xiaochun, 2020. "Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures," Energy, Elsevier, vol. 213(C).
    3. Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Mitu & Codina Movileanu & Venera Giurcan, 2022. "The Laminar Burning Velocities of Stoichiometric Methane–Air Mixture from Closed Vessels Measurements," Energies, MDPI, vol. 15(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu-Sheng Li & Guo-Xiu Li & Yan-Huan Jiang & Hong-Meng Li & Zuo-Yu Sun, 2017. "Study on the Effect of Flame Instability on the Flame Structural Characteristics of Hydrogen/Air Mixtures Based on the Fast Fourier Transform," Energies, MDPI, vol. 10(5), pages 1-16, May.
    2. Yang, Zhenzhong & Zhang, Fu & Wang, Lijun & Wang, Kaixin & Zhang, Donghui, 2018. "Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine," Energy, Elsevier, vol. 147(C), pages 715-728.
    3. Meng, Hao & Ji, Changwei & Shen, Jianpu & Yang, Jinxin & Xin, Gu & Chang, Ke & Wang, Shuofeng, 2023. "Analysis of combustion characteristics under cooled EGR in the hydrogen-fueled Wankel rotary engine," Energy, Elsevier, vol. 263(PB).
    4. Jiang, Haipeng & Bi, Mingshu & Gao, Zehua & Zhang, Zongling & Gao, Wei, 2022. "Effect of turbulence intensity on flame propagation and extinction limits of methane/coal dust explosions," Energy, Elsevier, vol. 239(PC).
    5. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effects of hydrogen assisted combustion of EBNOL IN SI engines under variable compression ratio and ignition timing," Energy, Elsevier, vol. 246(C).
    6. Qi, Chang & Lv, Xianshu & Wang, Yalei & Wu, Chuandong & Chen, Lei & Yan, Xingqing & Yu, Jianliang, 2023. "Effects of ethylene addition and dilution on the explosion characteristics of ethane-ethylene mixtures," Energy, Elsevier, vol. 280(C).
    7. Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
    8. Fu-Sheng Li & Guo-Xiu Li & Zuo-Yu Sun, 2017. "Explosion Behaviour of 30% Hydrogen/70% Methane-Blended Fuels in a Weak Turbulent Environment," Energies, MDPI, vol. 10(7), pages 1-15, July.
    9. Wang, Shuofeng & Sun, Yu & Yang, Jinxin & Wang, Huaiyu, 2024. "Effect of excess air ratio and ignition timing on the combustion and emission characteristics of the ammonia-hydrogen Wankel rotary engine," Energy, Elsevier, vol. 302(C).
    10. Huang, Sheng & Zhang, Yu & Huang, Ronghua & Xu, Shijie & Ma, Yinjie & Wang, Zhaowen & Zhang, Xinhua, 2019. "Quantitative characterization of crack and cell's morphological evolution in premixed expanding spherical flames," Energy, Elsevier, vol. 171(C), pages 161-169.
    11. Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
    12. Liu, Guilong & Wang, Jian & Zheng, Ligang & Pan, Rongkun & Lu, Chang & Wang, Yan & Zhao, Yongxian & Li, Yanjie, 2023. "Effect of hydrogen addition on explosion characteristics of premixed methane/air mixture under different equivalence ratio distributions," Energy, Elsevier, vol. 276(C).
    13. Wang, Du & Ji, Changwei & Wang, Shuofeng & Meng, Hao & Yang, Jinxin, 2019. "Chemical effects of CO2 dilution on CH4 and H2 spherical flame," Energy, Elsevier, vol. 185(C), pages 316-326.
    14. Wang, Du & Ji, Changwei & Wang, Shuofeng & Yang, Jinxin & Tang, Chuanqi, 2019. "Experimental investigation on near wall ignited lean methane/hydrogen/air flame," Energy, Elsevier, vol. 168(C), pages 1094-1103.
    15. Qi, Chang & Ding, Jianfei & Wang, Yue & Ning, Ye & Wang, Yalei & Liang, He & Yan, Xingqing & Yu, Jianliang, 2023. "Investigation of the upper flammability limit of ethylene/propane mixtures in air at high temperatures and pressures," Energy, Elsevier, vol. 281(C).
    16. Zhou, Shangyong & Gao, Jiancun & Luo, Zhenmin & Hu, Shoutao & Wang, Le & Wang, Tao, 2022. "Role of ferromagnetic metal velvet and DC magnetic field on the explosion of a C3H8/air mixture-effect on reaction mechanism," Energy, Elsevier, vol. 239(PC).
    17. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effect of variable compression ratio and equivalence ratio on performance, combustion and emission of hydrogen port injection SI engine," Energy, Elsevier, vol. 239(PE).
    18. Li, Dafang & Sun, Weifu & Luo, Zhenmin, 2023. "Methane deflagration promoted by enhancing ignition efficiency via hydrogen doping, with a view to fracturing shales," Energy, Elsevier, vol. 282(C).
    19. Wei, Chengcai & Li, Haitao & Luo, Zhenmin & Wang, Tao & Yu, Yingying & Wu, Mingqiu & Qi, Beibei & Yu, Minggao, 2024. "Quantitative analysis of flame luminance and explosion pressure in liquefied petroleum gas explosion and inerting: Grey relation analysis and kinetic mechanisms," Energy, Elsevier, vol. 304(C).
    20. Sun, Z.Y. & LIU, Shao-Yan, 2022. "A comparative study on the turbulent explosion characteristics of syngas between CO-enriched and H2-enriched," Energy, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3722-:d:818947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.