IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v85y2015icp503-510.html
   My bibliography  Save this article

Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures

Author

Listed:
  • Choi, Sun
  • Lee, Seungro
  • Kwon, Oh Chae

Abstract

The present study demonstrates the potential of hydrogen (H2)-doped ammonia (NH3) as a carbon-free fuel. The extinction limits, flame temperature and morphology of the counterflow nonpremixed NH3–H2/air flames at elevated temperatures and normal pressure are experimentally determined. Also, the detailed flame structure and the extinction limits are computed using a detailed kinetic mechanism. Results show that the blow-off limits, the concentration of radicals H, OH and O and the maximum flame temperature are enhanced with H2 substitution in NH3/air flames. This supports the potential of H2 as an additive for improving the reactivity and ignition of nonpremixed NH3/air flames and thus the potential of H2-doped NH3 as a carbon-free fuel. Meanwhile, the extinction limits (in terms of the mole fraction of NH3 in the fuel gas) and the maximum flame temperature are reduced with increasing strain rates, indicating that flames can sustain more NH3 at low strain rates. Also, it is observed that the blow-off limits and the maximum flame temperature are enhanced with increasing air temperature. Measured and predicted tendencies of the extinction limits and temperature for various conditions show encouraging agreement, but quantitative discrepancies among the measurements and predictions merit additional consideration in boundary condition modeling and the reaction mechanism.

Suggested Citation

  • Choi, Sun & Lee, Seungro & Kwon, Oh Chae, 2015. "Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures," Energy, Elsevier, vol. 85(C), pages 503-510.
  • Handle: RePEc:eee:energy:v:85:y:2015:i:c:p:503-510
    DOI: 10.1016/j.energy.2015.03.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215003709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.03.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oh, Jeongseog & Noh, Dongsoon & Ko, Changbok, 2013. "The effect of hydrogen addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace," Energy, Elsevier, vol. 62(C), pages 362-369.
    2. Gao, Xuan & Duan, Fei & Lim, Seng Chuan & Yip, Mee Sin, 2013. "NOx formation in hydrogen–methane turbulent diffusion flame under the moderate or intense low-oxygen dilution conditions," Energy, Elsevier, vol. 59(C), pages 559-569.
    3. Oh, Jeongseog & Noh, Dongsoon & Lee, Eungyeong, 2013. "The effect of CO addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace," Applied Energy, Elsevier, vol. 112(C), pages 350-357.
    4. Wang, Xin & Zhang, Hongguang & Yao, Baofeng & Lei, Yan & Sun, Xiaona & Wang, Daojing & Ge, Yunshan, 2012. "Experimental study on factors affecting lean combustion limit of S.I engine fueled with compressed natural gas and hydrogen blends," Energy, Elsevier, vol. 38(1), pages 58-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Grazia De Giorgi & Antonio Ficarella & Donato Fontanarosa & Elisa Pescini & Antonio Suma, 2020. "Investigation of the Effects of Plasma Discharges on Methane Decomposition for Combustion Enhancement of a Lean Flame," Energies, MDPI, vol. 13(6), pages 1-19, March.
    2. Li, Jun & Huang, Hongyu & Deng, Lisheng & He, Zhaohong & Osaka, Yugo & Kobayashi, Noriyuki, 2019. "Effect of hydrogen addition on combustion and heat release characteristics of ammonia flame," Energy, Elsevier, vol. 175(C), pages 604-617.
    3. Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
    4. Lu, Zhen & Ye, Jianpeng & Gui, Yong & Lu, Tianlong & Shi, Lei & An, Yanzhao & Wang, Tianyou, 2023. "Numerical study of the compression ignition of ammonia in a two-stroke marine engine by using HTCGR strategy," Energy, Elsevier, vol. 276(C).
    5. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    6. Ali Alnasif & Syed Mashruk & Masao Hayashi & Joanna Jójka & Hao Shi & Akihiro Hayakawa & Agustin Valera-Medina, 2023. "Performance Investigation of Currently Available Reaction Mechanisms in the Estimation of NO Measurements: A Comparative Study," Energies, MDPI, vol. 16(9), pages 1-30, April.
    7. Chen, Danan & Li, Jun & Li, Xing & Deng, Lisheng & He, Zhaohong & Huang, Hongyu & Kobayashi, Noriyuki, 2023. "Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner," Energy, Elsevier, vol. 263(PA).
    8. Lee, Seungro & Padilla, Rosa & Dunn-Rankin, Derek & Pham, Trinh & Kwon, Oh Chae, 2015. "Extinction limits and structure of counterflow nonpremixed H2O-laden CH4/air flames," Energy, Elsevier, vol. 93(P1), pages 442-450.
    9. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Ku, Jae Won & Choi, Sun & Kim, Hee Kyung & Lee, Seungro & Kwon, Oh Chae, 2018. "Extinction limits and structure of counterflow nonpremixed methane-ammonia/air flames," Energy, Elsevier, vol. 165(PA), pages 314-325.
    11. Mustafa Alnaeli & Mohammad Alnajideen & Rukshan Navaratne & Hao Shi & Pawel Czyzewski & Ping Wang & Sven Eckart & Ali Alsaegh & Ali Alnasif & Syed Mashruk & Agustin Valera Medina & Philip John Bowen, 2023. "High-Temperature Materials for Complex Components in Ammonia/Hydrogen Gas Turbines: A Critical Review," Energies, MDPI, vol. 16(19), pages 1-46, October.
    12. Yin, Bingqian & Lu, Zhen & Shi, Lei & Lu, Tianlong & Ye, Jianpeng & Ma, Junqing & Wang, Tianyou, 2024. "Numerical simulation of a spark ignition ammonia marine engine for future ship power applications," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Huaxian & Gao, Zihe & Ji, Jie & Zhang, Yongming & Li, Kaiyuan, 2018. "Experimental and theoretical study on flame front temperatures within ceiling jets from turbulent diffusion flames of n-heptane fuel," Energy, Elsevier, vol. 164(C), pages 79-86.
    2. Oh, Jeongseog & Noh, Dongsoon & Ko, Changbok, 2013. "The effect of hydrogen addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace," Energy, Elsevier, vol. 62(C), pages 362-369.
    3. Zaidani, Mouna & Tajik, Abdul Raouf & Qureshi, Zahid Ahmed & Shamim, Tariq & Abu Al-Rub, Rashid K., 2018. "Investigating the flue-wall deformation effects on performance characteristics of an open-top aluminum anode baking furnace," Applied Energy, Elsevier, vol. 231(C), pages 1033-1049.
    4. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    5. Oh, Jeongseog & Noh, Dongsoon, 2015. "Flame characteristics of a non-premixed oxy-fuel jet in a lab-scale furnace," Energy, Elsevier, vol. 81(C), pages 328-343.
    6. Hussain, Muzafar & Abdelhafez, Ahmed & Nemitallah, Medhat A. & Araoye, Abdulrazaq A. & Ben-Mansour, Rached & Habib, Mohamed A., 2020. "A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines," Applied Energy, Elsevier, vol. 279(C).
    7. Tajik, Abdul Raouf & Shamim, Tariq & Zaidani, Mouna & Abu Al-Rub, Rashid K., 2018. "The effects of flue-wall design modifications on combustion and flow characteristics of an aluminum anode baking furnace-CFD modeling," Applied Energy, Elsevier, vol. 230(C), pages 207-219.
    8. Abdelhafez, Ahmed & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2018. "Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor," Applied Energy, Elsevier, vol. 215(C), pages 63-74.
    9. Choi, Sun & Kim, Tae Young & Kim, Hee Kyung & Koo, Jaye & Kim, Jeong Soo & Kwon, Oh Chae, 2015. "Properties of inverse nonpremixed pure O2/CH4 coflow flames in a model combustor," Energy, Elsevier, vol. 93(P1), pages 1105-1115.
    10. Wang, Feifei & Li, Pengfei & Mei, Zhenfeng & Zhang, Jianpeng & Mi, Jianchun, 2014. "Combustion of CH4/O2/N2 in a well stirred reactor," Energy, Elsevier, vol. 72(C), pages 242-253.
    11. Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.
    12. Duarte, Jorge & Amador, Germán & Garcia, Jesus & Fontalvo, Armando & Vasquez Padilla, Ricardo & Sanjuan, Marco & Gonzalez Quiroga, Arturo, 2014. "Auto-ignition control in turbocharged internal combustion engines operating with gaseous fuels," Energy, Elsevier, vol. 71(C), pages 137-147.
    13. He, Yizhuo & Zou, Chun & Song, Yu & Liu, Yang & Zheng, Chuguang, 2016. "Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF)," Energy, Elsevier, vol. 112(C), pages 1024-1035.
    14. Rafaa Saaidia & Mohamed Ali Jemni & Mohamed Salah Abid, 2017. "Simulation and Empirical Studies of the Commercial SI Engine Performance and Its Emission Levels When Running on a CNG and Hydrogen Blend," Energies, MDPI, vol. 11(1), pages 1-22, December.
    15. Kouchachvili, Lia & Entchev, Evgueniy, 2018. "Power to gas and H2/NG blend in SMART energy networks concept," Renewable Energy, Elsevier, vol. 125(C), pages 456-464.
    16. Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2012. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers 12003, Concordia University, Department of Economics.
    17. Lazaroiu, Gheorghe & Pop, Elena & Negreanu, Gabriel & Pisa, Ionel & Mihaescu, Lucian & Bondrea, Andreya & Berbece, Viorel, 2017. "Biomass combustion with hydrogen injection for energy applications," Energy, Elsevier, vol. 127(C), pages 351-357.
    18. Lin Lu & Haoyuan Jiang, 2024. "Study of NO and CO Formation Pathways in Jet Flames with CH 4 /H 2 Fuel Blends," Energies, MDPI, vol. 17(17), pages 1-19, September.
    19. Stephan Karmann & Stefan Eicheldinger & Maximilian Prager & Malte Jaensch & Georg Wachtmeister, 2023. "Optical and Thermodynamic Investigations of a Methane- and Hydrogen-Blend-Fueled Large-Bore Engine Using a Fisheye Optical System," Energies, MDPI, vol. 16(4), pages 1-26, February.
    20. Kang, Yinhu & Wei, Shuang & Zhang, Pengyuan & Lu, Xiaofeng & Wang, Quanhai & Gou, Xiaolong & Huang, Xiaomei & Peng, Shini & Yang, Dong & Ji, Xuanyu, 2017. "Detailed multi-dimensional study on NOx formation and destruction mechanisms in dimethyl ether/air diffusion flame under the moderate or intense low-oxygen dilution (MILD) condition," Energy, Elsevier, vol. 119(C), pages 1195-1211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:85:y:2015:i:c:p:503-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.