IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v62y2013icp362-369.html
   My bibliography  Save this article

The effect of hydrogen addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace

Author

Listed:
  • Oh, Jeongseog
  • Noh, Dongsoon
  • Ko, Changbok

Abstract

The effects of hydrogen (H2) addition to a fuel jet on a non-premixed oxy-methane flame were experimentally investigated in a lab-scale furnace with a slot-type burner. To observe the flame behavior of a non-premixed oxy-methane jet, the flame stabilization and flame luminescence were measured. The flow velocity was varied in the range of uF = 7 ∼ 50 m/s for methane (CH4) gas and uOx = 10 ∼ 120 m/s for oxygen (O2) gas. The objective of the current study is to investigate the characteristics of the flame stabilization, flame spectra, and flame structure of a non-premixed oxy-methane flame as increasing H2 mole fraction in the fuel jet. The mole fraction of H2 gas in the fuel jet (XH2) was changed from XH2 = 0–15% over five steps. The experimental measurement showed that the flame stabilization area broadened as the hydrogen mole fraction in a fuel jet increased. In addition, the flame length of the non-premixed oxy-methane flame decreased as the hydrogen mole fraction in the fuel jet increased.

Suggested Citation

  • Oh, Jeongseog & Noh, Dongsoon & Ko, Changbok, 2013. "The effect of hydrogen addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace," Energy, Elsevier, vol. 62(C), pages 362-369.
  • Handle: RePEc:eee:energy:v:62:y:2013:i:c:p:362-369
    DOI: 10.1016/j.energy.2013.09.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.09.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oh, Jeongseog & Noh, Dongsoon & Lee, Eungyeong, 2013. "The effect of CO addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace," Applied Energy, Elsevier, vol. 112(C), pages 350-357.
    2. Gao, Xuan & Duan, Fei & Lim, Seng Chuan & Yip, Mee Sin, 2013. "NOx formation in hydrogen–methane turbulent diffusion flame under the moderate or intense low-oxygen dilution conditions," Energy, Elsevier, vol. 59(C), pages 559-569.
    3. de Persis, Stéphanie & Foucher, Fabrice & Pillier, Laure & Osorio, Vladimiro & Gökalp, Iskender, 2013. "Effects of O2 enrichment and CO2 dilution on laminar methane flames," Energy, Elsevier, vol. 55(C), pages 1055-1066.
    4. Oh, Jeongseog & Noh, Dongsoon, 2012. "Laminar burning velocity of oxy-methane flames in atmospheric condition," Energy, Elsevier, vol. 45(1), pages 669-675.
    5. Bandeira Santos, Alex Álisson & Torres, Ednildo Andrade & de Paula Pereira, Pedro Afonso, 2011. "Experimental investigation of the natural gas confined flames using the OEC," Energy, Elsevier, vol. 36(3), pages 1527-1534.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oh, Jeongseog & Noh, Dongsoon, 2015. "Flame characteristics of a non-premixed oxy-fuel jet in a lab-scale furnace," Energy, Elsevier, vol. 81(C), pages 328-343.
    2. Wan, Huaxian & Gao, Zihe & Ji, Jie & Zhang, Yongming & Li, Kaiyuan, 2018. "Experimental and theoretical study on flame front temperatures within ceiling jets from turbulent diffusion flames of n-heptane fuel," Energy, Elsevier, vol. 164(C), pages 79-86.
    3. Hussain, Muzafar & Abdelhafez, Ahmed & Nemitallah, Medhat A. & Araoye, Abdulrazaq A. & Ben-Mansour, Rached & Habib, Mohamed A., 2020. "A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines," Applied Energy, Elsevier, vol. 279(C).
    4. Choi, Sun & Lee, Seungro & Kwon, Oh Chae, 2015. "Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures," Energy, Elsevier, vol. 85(C), pages 503-510.
    5. Stephan Karmann & Stefan Eicheldinger & Maximilian Prager & Malte Jaensch & Georg Wachtmeister, 2023. "Optical and Thermodynamic Investigations of a Methane- and Hydrogen-Blend-Fueled Large-Bore Engine Using a Fisheye Optical System," Energies, MDPI, vol. 16(4), pages 1-26, February.
    6. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    7. Choi, Sun & Kim, Tae Young & Kim, Hee Kyung & Koo, Jaye & Kim, Jeong Soo & Kwon, Oh Chae, 2015. "Properties of inverse nonpremixed pure O2/CH4 coflow flames in a model combustor," Energy, Elsevier, vol. 93(P1), pages 1105-1115.
    8. Lazaroiu, Gheorghe & Pop, Elena & Negreanu, Gabriel & Pisa, Ionel & Mihaescu, Lucian & Bondrea, Andreya & Berbece, Viorel, 2017. "Biomass combustion with hydrogen injection for energy applications," Energy, Elsevier, vol. 127(C), pages 351-357.
    9. Zaidani, Mouna & Tajik, Abdul Raouf & Qureshi, Zahid Ahmed & Shamim, Tariq & Abu Al-Rub, Rashid K., 2018. "Investigating the flue-wall deformation effects on performance characteristics of an open-top aluminum anode baking furnace," Applied Energy, Elsevier, vol. 231(C), pages 1033-1049.
    10. Abdelhafez, Ahmed & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2018. "Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor," Applied Energy, Elsevier, vol. 215(C), pages 63-74.
    11. Tajik, Abdul Raouf & Shamim, Tariq & Zaidani, Mouna & Abu Al-Rub, Rashid K., 2018. "The effects of flue-wall design modifications on combustion and flow characteristics of an aluminum anode baking furnace-CFD modeling," Applied Energy, Elsevier, vol. 230(C), pages 207-219.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Feifei & Li, Pengfei & Mei, Zhenfeng & Zhang, Jianpeng & Mi, Jianchun, 2014. "Combustion of CH4/O2/N2 in a well stirred reactor," Energy, Elsevier, vol. 72(C), pages 242-253.
    2. Choi, Sun & Lee, Seungro & Kwon, Oh Chae, 2015. "Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures," Energy, Elsevier, vol. 85(C), pages 503-510.
    3. Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.
    4. Oh, Jeongseog & Noh, Dongsoon, 2015. "Flame characteristics of a non-premixed oxy-fuel jet in a lab-scale furnace," Energy, Elsevier, vol. 81(C), pages 328-343.
    5. Abdelhafez, Ahmed & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2018. "Stability map and shape of premixed CH4/O2/CO2 flames in a model gas-turbine combustor," Applied Energy, Elsevier, vol. 215(C), pages 63-74.
    6. Choi, Sun & Kim, Tae Young & Kim, Hee Kyung & Koo, Jaye & Kim, Jeong Soo & Kwon, Oh Chae, 2015. "Properties of inverse nonpremixed pure O2/CH4 coflow flames in a model combustor," Energy, Elsevier, vol. 93(P1), pages 1105-1115.
    7. Hu, Xianzhong & Yu, Qingbo & Liu, Junxiang & Sun, Nan, 2014. "Investigation of laminar flame speeds of CH4/O2/CO2 mixtures at ordinary pressure and kinetic simulation," Energy, Elsevier, vol. 70(C), pages 626-634.
    8. Wan, Huaxian & Gao, Zihe & Ji, Jie & Zhang, Yongming & Li, Kaiyuan, 2018. "Experimental and theoretical study on flame front temperatures within ceiling jets from turbulent diffusion flames of n-heptane fuel," Energy, Elsevier, vol. 164(C), pages 79-86.
    9. Li, Ruikang & Luo, Zhenmin & Wang, Tao & Cheng, Fangming & Lin, Haifei & Zhu, Xiaochun, 2020. "Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures," Energy, Elsevier, vol. 213(C).
    10. Zaidani, Mouna & Tajik, Abdul Raouf & Qureshi, Zahid Ahmed & Shamim, Tariq & Abu Al-Rub, Rashid K., 2018. "Investigating the flue-wall deformation effects on performance characteristics of an open-top aluminum anode baking furnace," Applied Energy, Elsevier, vol. 231(C), pages 1033-1049.
    11. González Álvarez, José Francisco & Gonzalo de Grado, Jesús, 2019. "Study of combustion in CO2-Capturing semi-closed Brayton cycle conditions," Energy, Elsevier, vol. 166(C), pages 1276-1290.
    12. He, Yizhuo & Zou, Chun & Song, Yu & Liu, Yang & Zheng, Chuguang, 2016. "Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF)," Energy, Elsevier, vol. 112(C), pages 1024-1035.
    13. Hu, Xianzhong & Yu, Qingbo, 2018. "Effect of the elevated initial temperature on the laminar flame speeds of oxy-methane mixtures," Energy, Elsevier, vol. 147(C), pages 876-883.
    14. Oh, Jeongseog & Noh, Dongsoon & Lee, Eungyeong, 2013. "The effect of CO addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace," Applied Energy, Elsevier, vol. 112(C), pages 350-357.
    15. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    16. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    17. Li, Yan-Qin & Cao, Hai-Liang & Zhou, Huai-Chun & Zhou, Jun-Jie & Liao, Xiao-Yan, 2017. "Research on dynamics of a laminar diffusion flame with bulk flow forcing," Energy, Elsevier, vol. 141(C), pages 1300-1312.
    18. Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2012. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers 12003, Concordia University, Department of Economics.
    19. Lin Lu & Haoyuan Jiang, 2024. "Study of NO and CO Formation Pathways in Jet Flames with CH 4 /H 2 Fuel Blends," Energies, MDPI, vol. 17(17), pages 1-19, September.
    20. Bělohradský, Petr & Skryja, Pavel & Hudák, Igor, 2014. "Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics," Energy, Elsevier, vol. 75(C), pages 116-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:62:y:2013:i:c:p:362-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.