IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v129y2019icp610-618.html
   My bibliography  Save this article

Insights into residential EV charging behavior using energy meter data

Author

Listed:
  • Kim, Jae D.

Abstract

Mass adoption of the plug-in electric vehicle (EV) technology is imperative for the rapid electrification of the transportation sector to mitigate catastrophic effects from climate change. Rapid integration of a large number of EVs will inevitably cause uncertainty and variability on the operation of the existing electric power system. There is high uncertainty on not only the speed and scale of EV adoption but also the EV energy and power requirements that depends on EV charging patterns. This study uses energy meter-level data from the San Diego region to analyze the energy load profiles of residential customers under the time-of-use (TOU) rate with and without EV charging requirements. Unlike previous forecasts on the effects of EV charging loads, the energy load profile of TOU customers with EVs reveal a “twin demand peak” where there is a peak demand during the evening hours and another at midnight. Results reveal potential issues for grid operations with greater EV adoption and the importance of careful TOU rate design.

Suggested Citation

  • Kim, Jae D., 2019. "Insights into residential EV charging behavior using energy meter data," Energy Policy, Elsevier, vol. 129(C), pages 610-618.
  • Handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:610-618
    DOI: 10.1016/j.enpol.2019.02.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519301326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.02.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.
    2. Axsen, Jonn & Kurani, Kenneth S. & McCarthy, Ryan & Yang, Christopher, 2011. "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model," Energy Policy, Elsevier, vol. 39(3), pages 1617-1629, March.
    3. Kim, Jae D. & Rahimi, Mansour, 2014. "Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: Impacts on greenhouse gas (GHG) emissions," Energy Policy, Elsevier, vol. 73(C), pages 620-630.
    4. Weiller, Claire, 2011. "Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States," Energy Policy, Elsevier, vol. 39(6), pages 3766-3778, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dillman, Kevin Joseph & Fazeli, Reza & Shafiei, Ehsan & Jónsson, Jón Örvar G. & Haraldsson, Hákon Valur & Davíðsdóttir, Brynhildur, 2021. "Spatiotemporal analysis of the impact of electric vehicle integration on Reykjavik's electrical system at the city and distribution system level," Utilities Policy, Elsevier, vol. 68(C).
    2. Jasmine Ramsebner & Albert Hiesl & Reinhard Haas, 2020. "Efficient Load Management for BEV Charging Infrastructure in Multi-Apartment Buildings," Energies, MDPI, vol. 13(22), pages 1-23, November.
    3. Ma, Shao-Chao & Yi, Bo-Wen & Fan, Ying, 2022. "Research on the valley-filling pricing for EV charging considering renewable power generation," Energy Economics, Elsevier, vol. 106(C).
    4. Aree Wangsupphaphol & Surachai Chaitusaney, 2022. "Subsidizing Residential Low Priority Smart Charging: A Power Management Strategy for Electric Vehicle in Thailand," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    5. Tikka, Ville & Haapaniemi, Jouni & Räisänen, Otto & Honkapuro, Samuli, 2022. "Convolutional neural networks in estimating the spatial distribution of electric vehicles to support electricity grid planning," Applied Energy, Elsevier, vol. 328(C).
    6. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    7. Meintjes, Tiago & Castro, Rui & Pires, A.J., 2021. "Impact of vehicle charging on Portugal's national electricity load profile in 2030," Utilities Policy, Elsevier, vol. 73(C).
    8. Mauro Zucca & Vincenzo Cirimele & Jorge Bruna & Davide Signorino & Erika Laporta & Jacopo Colussi & Miguel Angel Alonso Tejedor & Federico Fissore & Umberto Pogliano, 2021. "Assessment of the Overall Efficiency in WPT Stations for Electric Vehicles," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    9. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    10. Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
    11. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    12. Brinkel, N.B.G. & Schram, W.L. & AlSkaif, T.A. & Lampropoulos, I. & van Sark, W.G.J.H.M., 2020. "Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits," Applied Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    2. Kim, Jae D. & Rahimi, Mansour, 2014. "Future energy loads for a large-scale adoption of electric vehicles in the city of Los Angeles: Impacts on greenhouse gas (GHG) emissions," Energy Policy, Elsevier, vol. 73(C), pages 620-630.
    3. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    4. Saxena, Samveg & MacDonald, Jason & Moura, Scott, 2015. "Charging ahead on the transition to electric vehicles with standard 120V wall outlets," Applied Energy, Elsevier, vol. 157(C), pages 720-728.
    5. Crossin, Enda & Doherty, Peter J.B., 2016. "The effect of charging time on the comparative environmental performance of different vehicle types," Applied Energy, Elsevier, vol. 179(C), pages 716-726.
    6. Schill, Wolf-Peter & Gerbaulet, Clemens, 2015. "Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 156, pages 185-196.
    7. Zhang, Li & Shaffer, Brendan & Brown, Tim & Scott Samuelsen, G., 2015. "The optimization of DC fast charging deployment in California," Applied Energy, Elsevier, vol. 157(C), pages 111-122.
    8. Davies, Jamie & Kurani, Kenneth S., 2013. "Moving from assumption to observation: Implications for energy and emissions impacts of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 62(C), pages 550-560.
    9. Pol Olivella-Rosell & Roberto Villafafila-Robles & Andreas Sumper & Joan Bergas-Jané, 2015. "Probabilistic Agent-Based Model of Electric Vehicle Charging Demand to Analyse the Impact on Distribution Networks," Energies, MDPI, vol. 8(5), pages 1-28, May.
    10. Arslan, Okan & Yıldız, Barış & Ekin Karaşan, Oya, 2014. "Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips," Energy Policy, Elsevier, vol. 74(C), pages 168-178.
    11. Harris, Chioke B. & Webber, Michael E., 2014. "An empirically-validated methodology to simulate electricity demand for electric vehicle charging," Applied Energy, Elsevier, vol. 126(C), pages 172-181.
    12. Turrentine, Tom & Hardman, Scott & Garas, Dahlia, 2018. "Steering the Electric Vehicle Transition to Sustainability," Institute of Transportation Studies, Working Paper Series qt1w3836d3, Institute of Transportation Studies, UC Davis.
    13. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    14. Bedir, Abdulkadir, 2015. "Integrating Plug-in Electric Vehicles into California’s Grid System: Policy Entrepreneurship and Technical Challenges," Institute of Transportation Studies, Working Paper Series qt48w9z0jr, Institute of Transportation Studies, UC Davis.
    15. Marshall, Brandon M. & Kelly, Jarod C. & Lee, Tae-Kyung & Keoleian, Gregory A. & Filipi, Zoran, 2013. "Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study," Energy Policy, Elsevier, vol. 58(C), pages 358-370.
    16. Lawrence Fulton, 2020. "A Publicly Available Simulation of Battery Electric, Hybrid Electric, and Gas-Powered Vehicles," Energies, MDPI, vol. 13(10), pages 1-15, May.
    17. Robinson, A.P. & Blythe, P.T. & Bell, M.C. & Hübner, Y. & Hill, G.A., 2013. "Analysis of electric vehicle driver recharging demand profiles and subsequent impacts on the carbon content of electric vehicle trips," Energy Policy, Elsevier, vol. 61(C), pages 337-348.
    18. Speidel, Stuart & Bräunl, Thomas, 2014. "Driving and charging patterns of electric vehicles for energy usage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 97-110.
    19. Pareschi, Giacomo & Küng, Lukas & Georges, Gil & Boulouchos, Konstantinos, 2020. "Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data," Applied Energy, Elsevier, vol. 275(C).
    20. Mandev, Ahmet & Plötz, Patrick & Sprei, Frances & Tal, Gil, 2022. "Empirical charging behavior of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 321(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:610-618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.