IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i5p4160-4187d49393.html
   My bibliography  Save this article

Probabilistic Agent-Based Model of Electric Vehicle Charging Demand to Analyse the Impact on Distribution Networks

Author

Listed:
  • Pol Olivella-Rosell

    (Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya, EU d'Enginyeria Tècnica Industrial de Barcelona, Carrer Comte d'Urgell, 187-08036 Barcelona, Spain)

  • Roberto Villafafila-Robles

    (Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya, EU d'Enginyeria Tècnica Industrial de Barcelona, Carrer Comte d'Urgell, 187-08036 Barcelona, Spain
    Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya, ETS d'Enginyeria Industrial de Barcelona, Av. Diagonal, 647, Pl. 2. 08028 Barcelona, Spain)

  • Andreas Sumper

    (Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya, EU d'Enginyeria Tècnica Industrial de Barcelona, Carrer Comte d'Urgell, 187-08036 Barcelona, Spain
    Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya, ETS d'Enginyeria Industrial de Barcelona, Av. Diagonal, 647, Pl. 2. 08028 Barcelona, Spain)

  • Joan Bergas-Jané

    (Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC), Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya, ETS d'Enginyeria Industrial de Barcelona, Av. Diagonal, 647, Pl. 2. 08028 Barcelona, Spain)

Abstract

Electric Vehicles (EVs) have seen significant growth in sales recently and it is not clear how power systems will support the charging of a great number of vehicles. This paper proposes a methodology which allows the aggregated EV charging demand to be determined. The methodology applied to obtain the model is based on an agent-based approach to calculate the EV charging demand in a certain area. This model simulates each EV driver to consider its EV model characteristics, mobility needs, and charging processes required to reach its destination. This methodology also permits to consider social and economic variables. Furthermore, the model is stochastic, in order to consider the random pattern of some variables. The model is applied to Barcelona’s (Spain) mobility pattern and uses the 37-node IEEE test feeder adapted to common distribution grid characteristics from Barcelona. The corresponding grid impact is analyzed in terms of voltage drop and four charging strategies are compared. The case study indicates that the variability in scenarios without control is relevant, but not in scenarios with control. Moreover, the voltages do not reach the minimum voltage allowed, but the MV/LV substations could exceed their capacities. Finally, it is determined that all EVs can charge during the valley without any negative effect on the distribution grid. In conclusion, it is determined that the methodology presented allows the EV charging demand to be calculated, considering different variables, to obtain better accuracy in the results.

Suggested Citation

  • Pol Olivella-Rosell & Roberto Villafafila-Robles & Andreas Sumper & Joan Bergas-Jané, 2015. "Probabilistic Agent-Based Model of Electric Vehicle Charging Demand to Analyse the Impact on Distribution Networks," Energies, MDPI, vol. 8(5), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:4160-4187:d:49393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/5/4160/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/5/4160/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.
    2. João Soares & Bruno Canizes & Cristina Lobo & Zita Vale & Hugo Morais, 2012. "Electric Vehicle Scenario Simulator Tool for Smart Grid Operators," Energies, MDPI, vol. 5(6), pages 1-19, June.
    3. Qinglai Guo & Yao Wang & Hongbin Sun & Zhengshuo Li & Shujun Xin & Boming Zhang, 2012. "Factor Analysis of the Aggregated Electric Vehicle Load Based on Data Mining," Energies, MDPI, vol. 5(6), pages 1-18, June.
    4. Grenier, Agathe & Page, Shannon, 2012. "The impact of electrified transport on local grid infrastructure: A comparison between electric cars and light rail," Energy Policy, Elsevier, vol. 49(C), pages 355-364.
    5. Peng, Minghong & Liu, Lian & Jiang, Chuanwen, 2012. "A review on the economic dispatch and risk management of the large-scale plug-in electric vehicles (PHEVs)-penetrated power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1508-1515.
    6. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    7. Weiller, Claire, 2011. "Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States," Energy Policy, Elsevier, vol. 39(6), pages 3766-3778, June.
    8. Eduardo Valsera-Naranjo & Andreas Sumper & Roberto Villafafila-Robles & David Martínez-Vicente, 2012. "Probabilistic Method to Assess the Impact of Charging of Electric Vehicles on Distribution Grids," Energies, MDPI, vol. 5(5), pages 1-29, May.
    9. Amjad, Shaik & Neelakrishnan, S. & Rudramoorthy, R., 2010. "Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1104-1110, April.
    10. Loisel, Rodica & Pasaoglu, Guzay & Thiel, Christian, 2014. "Large-scale deployment of electric vehicles in Germany by 2030: An analysis of grid-to-vehicle and vehicle-to-grid concepts," Energy Policy, Elsevier, vol. 65(C), pages 432-443.
    11. Lyon, Thomas P. & Michelin, Mark & Jongejan, Arie & Leahy, Thomas, 2012. "Is “smart charging” policy for electric vehicles worthwhile?," Energy Policy, Elsevier, vol. 41(C), pages 259-268.
    12. Wang, Jianhui & Liu, Cong & Ton, Dan & Zhou, Yan & Kim, Jinho & Vyas, Anantray, 2011. "Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power," Energy Policy, Elsevier, vol. 39(7), pages 4016-4021, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schill, Wolf-Peter & Gerbaulet, Clemens, 2015. "Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 156, pages 185-196.
    2. Aghaei, Jamshid & Nezhad, Ali Esmaeel & Rabiee, Abdorreza & Rahimi, Ehsan, 2016. "Contribution of Plug-in Hybrid Electric Vehicles in power system uncertainty management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 450-458.
    3. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    4. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    5. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    6. Monica Alonso & Hortensia Amaris & Jean Gardy Germain & Juan Manuel Galan, 2014. "Optimal Charging Scheduling of Electric Vehicles in Smart Grids by Heuristic Algorithms," Energies, MDPI, vol. 7(4), pages 1-27, April.
    7. Kaschub, Thomas & Jochem, Patrick & Fichtner, Wolf, 2016. "Solar energy storage in German households: profitability, load changes and flexibility," Energy Policy, Elsevier, vol. 98(C), pages 520-532.
    8. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    9. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    10. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    11. Asadi, Amin & Nurre Pinkley, Sarah, 2021. "A stochastic scheduling, allocation, and inventory replenishment problem for battery swap stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    12. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    13. Szinai, Julia K. & Sheppard, Colin J.R. & Abhyankar, Nikit & Gopal, Anand R., 2020. "Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management," Energy Policy, Elsevier, vol. 136(C).
    14. Saxena, Samveg & MacDonald, Jason & Moura, Scott, 2015. "Charging ahead on the transition to electric vehicles with standard 120V wall outlets," Applied Energy, Elsevier, vol. 157(C), pages 720-728.
    15. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    16. Crossin, Enda & Doherty, Peter J.B., 2016. "The effect of charging time on the comparative environmental performance of different vehicle types," Applied Energy, Elsevier, vol. 179(C), pages 716-726.
    17. Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
    18. Keller, Victor & English, Jeffrey & Fernandez, Julian & Wade, Cameron & Fowler, McKenzie & Scholtysik, Sven & Palmer-Wilson, Kevin & Donald, James & Robertson, Bryson & Wild, Peter & Crawford, Curran , 2019. "Electrification of road transportation with utility controlled charging: A case study for British Columbia with a 93% renewable electricity target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Meintjes, Tiago & Castro, Rui & Pires, A.J., 2021. "Impact of vehicle charging on Portugal's national electricity load profile in 2030," Utilities Policy, Elsevier, vol. 73(C).
    20. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:4160-4187:d:49393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.