IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v351y2023ics0306261923011327.html
   My bibliography  Save this article

A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network

Author

Listed:
  • Zhang, Tianren
  • Huang, Yuping
  • Liao, Hui
  • Liang, Yu

Abstract

Due to the participation of large-scale electric vehicles (EVs) in Vehicle-to-Grid (V2G) services, V2G dispatch centers need to predict the charging and discharging (C&D) loads of electric vehicles in a short time period. This study proposes a novel machine learning based approach for EV load forecasting in power supply systems facing high resource uncertainty. This method takes advantage of both Gradient Boosting Decision Tree (GBDT) algorithm and Time Convolutional Network (TCN) model. This study considers the service decisions of EV users and uses the GBDT algorithm to classify the EV discharge load dataset, with 92% accuracy. Also, the TCN model is used to capture local temporal features and predict the future C&D loads. In comparison with other baseline models, e.g. CNN-BILSTM, LSTM, PSO-BP, the stability of the TCN model is superior in real data charging load forecasting, and it is shown that the TCN model has the smallest error. The feasibility of the proposed GBDT-TCN hybrid model is verified by numerical cases,and achieves the RMSE of discharging forecasting less than 6.23%.

Suggested Citation

  • Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
  • Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923011327
    DOI: 10.1016/j.apenergy.2023.121768
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923011327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferro, G. & Minciardi, R. & Robba, M., 2020. "A user equilibrium model for electric vehicles: Joint traffic and energy demand assignment," Energy, Elsevier, vol. 198(C).
    2. Kim, Jae D., 2019. "Insights into residential EV charging behavior using energy meter data," Energy Policy, Elsevier, vol. 129(C), pages 610-618.
    3. Maltais, Louis-Gabriel & Gosselin, Louis, 2022. "Forecasting of short-term lighting and plug load electricity consumption in single residential units: Development and assessment of data-driven models for different horizons," Applied Energy, Elsevier, vol. 307(C).
    4. Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).
    5. Wang, Kang & Wang, Haixin & Yang, Zihao & Feng, Jiawei & Li, Yanzhen & Yang, Junyou & Chen, Zhe, 2023. "A transfer learning method for electric vehicles charging strategy based on deep reinforcement learning," Applied Energy, Elsevier, vol. 343(C).
    6. Bagheri Tookanlou, Mahsa & Pourmousavi, S. Ali & Marzband, Mousa, 2023. "A three-layer joint distributionally robust chance-constrained framework for optimal day-ahead scheduling of e-mobility ecosystem," Applied Energy, Elsevier, vol. 331(C).
    7. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    8. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    9. Sharma, S. & Jain, Prerna, 2023. "Risk-averse integrated DR and dynamic V2G scheduling of parking lot operator for enhanced market efficiency," Energy, Elsevier, vol. 275(C).
    10. Jamei, Mehdi & Ali, Mumtaz & Karbasi, Masoud & Xiang, Yong & Ahmadianfar, Iman & Yaseen, Zaher Mundher, 2022. "Designing a Multi-Stage Expert System for daily ocean wave energy forecasting: A multivariate data decomposition-based approach," Applied Energy, Elsevier, vol. 326(C).
    11. Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
    12. Majidpour, Mostafa & Qiu, Charlie & Chu, Peter & Pota, Hemanshu R. & Gadh, Rajit, 2016. "Forecasting the EV charging load based on customer profile or station measurement?," Applied Energy, Elsevier, vol. 163(C), pages 134-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haihong Bian & Quance Ren & Zhengyang Guo & Chengang Zhou & Zhiyuan Zhang & Ximeng Wang, 2024. "Predictive Model for EV Charging Load Incorporating Multimodal Travel Behavior and Microscopic Traffic Simulation," Energies, MDPI, vol. 17(11), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    2. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    3. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    4. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    5. Seyed Mahdi Miraftabzadeh & Michela Longo & Federica Foiadelli, 2021. "Estimation Model of Total Energy Consumptions of Electrical Vehicles under Different Driving Conditions," Energies, MDPI, vol. 14(4), pages 1-15, February.
    6. Yvenn Amara-Ouali & Yannig Goude & Pascal Massart & Jean-Michel Poggi & Hui Yan, 2021. "A Review of Electric Vehicle Load Open Data and Models," Energies, MDPI, vol. 14(8), pages 1-35, April.
    7. Mu Li & Yingqi Liu & Weizhong Yue, 2022. "Evolutionary Game of Actors in China’s Electric Vehicle Charging Infrastructure Industry," Energies, MDPI, vol. 15(23), pages 1-20, November.
    8. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
    9. Zhu, Lijing & Zhang, Qi & Lu, Huihui & Li, Hailong & Li, Yan & McLellan, Benjamin & Pan, Xunzhang, 2017. "Study on crowdfunding’s promoting effect on the expansion of electric vehicle charging piles based on game theory analysis," Applied Energy, Elsevier, vol. 196(C), pages 238-248.
    10. Munseok Chang & Sungwoo Bae & Gilhwan Cha & Jaehyun Yoo, 2021. "Aggregated Electric Vehicle Fast-Charging Power Demand Analysis and Forecast Based on LSTM Neural Network," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    11. Shi, Jiaqi & Liu, Nian & Huang, Yujing & Ma, Liya, 2022. "An Edge Computing-oriented Net Power Forecasting for PV-assisted Charging Station: Model Complexity and Forecasting Accuracy Trade-off," Applied Energy, Elsevier, vol. 310(C).
    12. Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).
    13. Xiong, Yingqi & Wang, Bin & Chu, Chi-cheng & Gadh, Rajit, 2018. "Vehicle grid integration for demand response with mixture user model and decentralized optimization," Applied Energy, Elsevier, vol. 231(C), pages 481-493.
    14. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    15. Dillman, Kevin Joseph & Fazeli, Reza & Shafiei, Ehsan & Jónsson, Jón Örvar G. & Haraldsson, Hákon Valur & Davíðsdóttir, Brynhildur, 2021. "Spatiotemporal analysis of the impact of electric vehicle integration on Reykjavik's electrical system at the city and distribution system level," Utilities Policy, Elsevier, vol. 68(C).
    16. Albert Hiesl & Jasmine Ramsebner & Reinhard Haas, 2021. "Modelling Stochastic Electricity Demand of Electric Vehicles Based on Traffic Surveys—The Case of Austria," Energies, MDPI, vol. 14(6), pages 1-19, March.
    17. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    18. Zhang, Lei & Huang, Zhijia & Wang, Zhenpo & Li, Xiaohui & Sun, Fengchun, 2024. "An urban charging load forecasting model based on trip chain model for private passenger electric vehicles: A case study in Beijing," Energy, Elsevier, vol. 299(C).
    19. Qian Wang & Xiaolong Yang & Xiaoyu Yu & Jingwen Yun & Jinbo Zhang, 2023. "Electric Vehicle Participation in Regional Grid Demand Response: Potential Analysis Model and Architecture Planning," Sustainability, MDPI, vol. 15(3), pages 1-22, February.
    20. Paterakis, Nikolaos G. & Gibescu, Madeleine, 2016. "A methodology to generate power profiles of electric vehicle parking lots under different operational strategies," Applied Energy, Elsevier, vol. 173(C), pages 111-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923011327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.