IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v249y2016i1p164-176.html
   My bibliography  Save this article

On time stochastic dominance induced by mixed integer-linear recourse in multistage stochastic programs

Author

Listed:
  • Escudero, Laureano F.
  • Garín, María Araceli
  • Merino, María
  • Pérez, Gloria

Abstract

We propose in this work a new multistage risk averse strategy based on Time Stochastic Dominance (TSD) along a given horizon. It can be considered as a mixture of the two risk averse measures based on first- and second-order stochastic dominance constraints induced by mixed integer-linear recourse, respectively. Given the dimensions of medium-sized problems augmented by the new variables and constraints required by this new risk measure, it is unrealistic to solve the problem up to optimality by plain use of MIP solvers in a reasonable computing time, at least. Instead of it, decomposition algorithms of some type should be used. We present an extension of our Branch-and-Fix Coordination algorithm, so named BFC-TSD, where a special treatment is given to cross scenario group constraints that link variables from different scenario groups. A broad computational experience is presented by comparing the risk neutral approach and the tested risk averse strategies. The performance of the new version of the BFC algorithm versus the plain use of a state-of-the-art MIP solver is also reported.

Suggested Citation

  • Escudero, Laureano F. & Garín, María Araceli & Merino, María & Pérez, Gloria, 2016. "On time stochastic dominance induced by mixed integer-linear recourse in multistage stochastic programs," European Journal of Operational Research, Elsevier, vol. 249(1), pages 164-176.
  • Handle: RePEc:eee:ejores:v:249:y:2016:i:1:p:164-176
    DOI: 10.1016/j.ejor.2015.03.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715002738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.03.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roman, Diana & Mitra, Gautam & Zverovich, Victor, 2013. "Enhanced indexation based on second-order stochastic dominance," European Journal of Operational Research, Elsevier, vol. 228(1), pages 273-281.
    2. Vincent Guigues, 2014. "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning," Computational Optimization and Applications, Springer, vol. 57(1), pages 167-203, January.
    3. Dupačová, Jitka & Kopa, Miloš, 2014. "Robustness of optimal portfolios under risk and stochastic dominance constraints," European Journal of Operational Research, Elsevier, vol. 234(2), pages 434-441.
    4. Willem Haneveld & Maarten Vlerk, 2006. "Integrated Chance Constraints: Reduced Forms and an Algorithm," Computational Management Science, Springer, vol. 3(4), pages 245-269, September.
    5. Kang Boda & Jerzy Filar, 2006. "Time Consistent Dynamic Risk Measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 169-186, February.
    6. Hu, Jian & Homem-de-Mello, Tito & Mehrotra, Sanjay, 2014. "Stochastically weighted stochastic dominance concepts with an application in capital budgeting," European Journal of Operational Research, Elsevier, vol. 232(3), pages 572-583.
    7. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    8. Andrey Lizyayev, 2012. "Stochastic dominance efficiency analysis of diversified portfolios: classification, comparison and refinements," Annals of Operations Research, Springer, vol. 196(1), pages 391-410, July.
    9. Csaba Fábián & Gautam Mitra & Diana Roman & Victor Zverovich, 2011. "An enhanced model for portfolio choice with SSD criteria: a constructive approach," Quantitative Finance, Taylor & Francis Journals, vol. 11(10), pages 1525-1534.
    10. Alonso-Ayuso, Antonio & Carvallo, Felipe & Escudero, Laureano F. & Guignard, Monique & Pi, Jiaxing & Puranmalka, Raghav & Weintraub, Andrés, 2014. "Medium range optimization of copper extraction planning under uncertainty in future copper prices," European Journal of Operational Research, Elsevier, vol. 233(3), pages 711-726.
    11. Siqian Shen & J. Cole Smith & Shabbir Ahmed, 2010. "Expectation and Chance-Constrained Models and Algorithms for Insuring Critical Paths," Management Science, INFORMS, vol. 56(10), pages 1794-1814, October.
    12. Meskarian, Rudabeh & Xu, Huifu & Fliege, Jörg, 2012. "Numerical methods for stochastic programs with second order dominance constraints with applications to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 216(2), pages 376-385.
    13. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Teresa Ortuno, M., 2003. "BFC, A branch-and-fix coordination algorithmic framework for solving some types of stochastic pure and mixed 0-1 programs," European Journal of Operational Research, Elsevier, vol. 151(3), pages 503-519, December.
    14. Nicole Bäuerle & André Mundt, 2009. "Dynamic mean-risk optimization in a binomial model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 219-239, October.
    15. Dimitri Drapkin & Ralf Gollmer & Uwe Gotzes & Frederike Neise & Rüdiger Schultz, 2011. "Risk Management with Stochastic Dominance Models in Energy Systems with Dispersed Generation," International Series in Operations Research & Management Science, in: Marida Bertocchi & Giorgio Consigli & Michael A. H. Dempster (ed.), Stochastic Optimization Methods in Finance and Energy, edition 1, chapter 0, pages 253-271, Springer.
    16. Miguel Carrión & Uwe Gotzes & Rüdiger Schultz, 2009. "Risk aversion for an electricity retailer with second-order stochastic dominance constraints," Computational Management Science, Springer, vol. 6(2), pages 233-250, May.
    17. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    18. Post, Thierry & Kopa, Miloš, 2013. "General linear formulations of stochastic dominance criteria," European Journal of Operational Research, Elsevier, vol. 230(2), pages 321-332.
    19. Dentcheva, Darinka & Martinez, Gabriela, 2012. "Two-stage stochastic optimization problems with stochastic ordering constraints on the recourse," European Journal of Operational Research, Elsevier, vol. 219(1), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maram Alwohaibi & Diana Roman, 2018. "ALM models based on second order stochastic dominance," Computational Management Science, Springer, vol. 15(2), pages 187-211, June.
    2. Eguía Ribero, María Isabel & Garín Martín, María Araceli & Unzueta Inchaurbe, Aitziber, 2018. "Generating cluster submodels from two-stage stochastic mixed integer optimization models," BILTOKI 31248, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    3. Jamshidi, Movahed & Kebriaei, Hamed & Sheikh-El-Eslami, Mohammad-Kazem, 2018. "An interval-based stochastic dominance approach for decision making in forward contracts of electricity market," Energy, Elsevier, vol. 158(C), pages 383-395.
    4. Aldasoro, Unai & Escudero, Laureano F. & Merino, María & Pérez, Gloria, 2017. "A parallel Branch-and-Fix Coordination based matheuristic algorithm for solving large sized multistage stochastic mixed 0–1 problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 590-606.
    5. Laureano F. Escudero & María Araceli Garín & Celeste Pizarro & Aitziber Unzueta, 2018. "On efficient matheuristic algorithms for multi-period stochastic facility location-assignment problems," Computational Optimization and Applications, Springer, vol. 70(3), pages 865-888, July.
    6. Yu Mei & Zhiping Chen & Jia Liu & Bingbing Ji, 2022. "Multi-stage portfolio selection problem with dynamic stochastic dominance constraints," Journal of Global Optimization, Springer, vol. 83(3), pages 585-613, July.
    7. Miloš Kopa & Vittorio Moriggia & Sebastiano Vitali, 2018. "Individual optimal pension allocation under stochastic dominance constraints," Annals of Operations Research, Springer, vol. 260(1), pages 255-291, January.
    8. İ. Esra Büyüktahtakın, 2022. "Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs," Annals of Operations Research, Springer, vol. 309(1), pages 1-35, February.
    9. Laureano F. Escudero & Juan F. Monge, 2018. "On capacity expansion planning under strategic and operational uncertainties based on stochastic dominance risk averse management," Computational Management Science, Springer, vol. 15(3), pages 479-500, October.
    10. Escudero, Laureano F. & Garín, M. Araceli & Monge, Juan F. & Unzueta, Aitziber, 2020. "Some matheuristic algorithms for multistage stochastic optimization models with endogenous uncertainty and risk management," European Journal of Operational Research, Elsevier, vol. 285(3), pages 988-1001.
    11. Baptista, Susana & Barbosa-Póvoa, Ana Paula & Escudero, Laureano F. & Gomes, Maria Isabel & Pizarro, Celeste, 2019. "On risk management of a two-stage stochastic mixed 0–1 model for the closed-loop supply chain design problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 91-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escudero Bueno, Laureano F. & Garín Martín, María Araceli & Merino Maestre, María & Pérez Sainz de Rozas, Gloria, 2015. "Some experiments on solving multistage stochastic mixed 0-1 programs with time stochastic dominance constraints," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    2. Alonso-Ayuso, Antonio & Carvallo, Felipe & Escudero, Laureano F. & Guignard, Monique & Pi, Jiaxing & Puranmalka, Raghav & Weintraub, Andrés, 2014. "Medium range optimization of copper extraction planning under uncertainty in future copper prices," European Journal of Operational Research, Elsevier, vol. 233(3), pages 711-726.
    3. Fang, Yi & Post, Thierry, 2017. "Higher-degree stochastic dominance optimality and efficiency," European Journal of Operational Research, Elsevier, vol. 261(3), pages 984-993.
    4. Post, Thierry, 2016. "Standard Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1009-1020.
    5. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    6. Bruni, Renato & Cesarone, Francesco & Scozzari, Andrea & Tardella, Fabio, 2017. "On exact and approximate stochastic dominance strategies for portfolio selection," European Journal of Operational Research, Elsevier, vol. 259(1), pages 322-329.
    7. Francesco Cesarone & Justo Puerto, 2024. "New approximate stochastic dominance approaches for Enhanced Indexation models," Papers 2401.12669, arXiv.org.
    8. Daniel R. Jiang & Warren B. Powell, 2018. "Risk-Averse Approximate Dynamic Programming with Quantile-Based Risk Measures," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 554-579, May.
    9. Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
    10. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    11. Ansaripoor, Amir H. & Oliveira, Fernando S., 2018. "Flexible lease contracts in the fleet replacement problem with alternative fuel vehicles: A real-options approach," European Journal of Operational Research, Elsevier, vol. 266(1), pages 316-327.
    12. Günter Bamberg & Michael Krapp, 2016. "Is time consistency compatible with risk aversion?," Review of Managerial Science, Springer, vol. 10(2), pages 195-211, March.
    13. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    14. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    15. Kallio, Markku & Dehghan Hardoroudi, Nasim, 2018. "Second-order stochastic dominance constrained portfolio optimization: Theory and computational tests," European Journal of Operational Research, Elsevier, vol. 264(2), pages 675-685.
    16. Alois Pichler, 2024. "Connection between higher order measures of risk and stochastic dominance," Computational Management Science, Springer, vol. 21(2), pages 1-28, December.
    17. Jia Liu & Zhiping Chen & Giorgio Consigli, 2021. "Interval-based stochastic dominance: theoretical framework and application to portfolio choices," Annals of Operations Research, Springer, vol. 307(1), pages 329-361, December.
    18. Guigues, Vincent, 2017. "Dual Dynamic Programing with cut selection: Convergence proof and numerical experiments," European Journal of Operational Research, Elsevier, vol. 258(1), pages 47-57.
    19. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
    20. Liesiö, Juuso & Xu, Peng & Kuosmanen, Timo, 2020. "Portfolio diversification based on stochastic dominance under incomplete probability information," European Journal of Operational Research, Elsevier, vol. 286(2), pages 755-768.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:249:y:2016:i:1:p:164-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.