IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v233y2014i3p711-726.html
   My bibliography  Save this article

Medium range optimization of copper extraction planning under uncertainty in future copper prices

Author

Listed:
  • Alonso-Ayuso, Antonio
  • Carvallo, Felipe
  • Escudero, Laureano F.
  • Guignard, Monique
  • Pi, Jiaxing
  • Puranmalka, Raghav
  • Weintraub, Andrés

Abstract

Deterministic mine planning models along a time horizon have proved to be very effective in supporting decisions on sequencing the extraction of material in copper mines. Some of these models have been developed for, and used successfully by CODELCO, the Chilean state copper company. In this paper, we wish to consider the uncertainty in a very volatile parameter of the problem, namely, the copper price along a given time horizon. We represent the uncertainty by a multistage scenario tree. The resulting stochastic model is then converted into a mixed 0–1 Deterministic Equivalent Model using a compact representation. We first introduce the stochastic model that maximizes the expected profit along the time horizon over all scenarios (i.e., as in a risk neutral environment). We then present several approaches for risk management in a risk averse environment. Specifically, we consider the maximization of the Value-at-Risk and several variants of the Conditional Value-at-Risk (one of them is new), the maximization of the expected profit minus the weighted probability of having an undesirable scenario in the solution provided by the model, and the maximization of the expected profit subject to stochastic dominance constraints recourse-integer for a set of profiles given by the pairs of target profits and bounds on either the probability of failure or the expected profit shortfall. We present an extensive computational experience on the actual problem, by comparing the risk neutral approach, the tested risk averse strategies and the performance of the traditional deterministic approach that uses the expected value of the uncertain parameters. The results clearly show the advantage of using the risk neutral strategy over the traditional deterministic approach, as well as the advantage of using any risk averse strategy over the risk neutral one.

Suggested Citation

  • Alonso-Ayuso, Antonio & Carvallo, Felipe & Escudero, Laureano F. & Guignard, Monique & Pi, Jiaxing & Puranmalka, Raghav & Weintraub, Andrés, 2014. "Medium range optimization of copper extraction planning under uncertainty in future copper prices," European Journal of Operational Research, Elsevier, vol. 233(3), pages 711-726.
  • Handle: RePEc:eee:ejores:v:233:y:2014:i:3:p:711-726
    DOI: 10.1016/j.ejor.2013.08.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713007327
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.08.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Ehrenmann & Yves Smeers, 2011. "Generation Capacity Expansion in a Risky Environment: A Stochastic Equilibrium Analysis," Operations Research, INFORMS, vol. 59(6), pages 1332-1346, December.
    2. Gfrerer, Helmut & Zapfel, Gunther, 1995. "Hierarchical model for production planning in the case of uncertain demand," European Journal of Operational Research, Elsevier, vol. 86(1), pages 142-161, October.
    3. Paul H. Zipkin, 1980. "Bounds on the Effect of Aggregating Variables in Linear Programs," Operations Research, INFORMS, vol. 28(2), pages 403-418, April.
    4. Willem Haneveld & Maarten Vlerk, 2006. "Integrated Chance Constraints: Reduced Forms and an Algorithm," Computational Management Science, Springer, vol. 3(4), pages 245-269, September.
    5. Laureano Escudero & Araceli Garín & María Merino & Gloria Pérez, 2007. "The value of the stochastic solution in multistage problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 48-64, July.
    6. Rodrigo Caro & Rafael Epstein & Pablo Santibañez & Andres Weintraub, 2007. "An Integrated Approach to the Long-Term Planning Process in the Copper Mining Industry," International Series in Operations Research & Management Science, in: Andres Weintraub & Carlos Romero & Trond Bjørndal & Rafael Epstein & Jaime Miranda (ed.), Handbook Of Operations Research In Natural Resources, chapter 0, pages 595-609, Springer.
    7. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    8. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    9. P. Baricelli & C. Lucas & E. Messina & G. Mitra, 1996. "A model for strategic planning under uncertainty," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(2), pages 361-384, December.
    10. Włodzimierz Ogryczak & Tomasz Śliwiński, 2011. "On solving the dual for portfolio selection by optimizing Conditional Value at Risk," Computational Optimization and Applications, Springer, vol. 50(3), pages 591-595, December.
    11. EHRENMANN, Andreas & SMEERS, Yves, 2011. "Generation capacity expansion in a risky environment: a stochastic equilibrium analysis," LIDAM Reprints CORE 2379, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Gaivoronski, Alexei & Sechi, Giovanni M. & Zuddas, Paola, 2012. "Cost/risk balanced management of scarce resources using stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 214-224.
    13. Andrey Lizyayev, 2012. "Stochastic dominance efficiency analysis of diversified portfolios: classification, comparison and refinements," Annals of Operations Research, Springer, vol. 196(1), pages 391-410, July.
    14. Colvin, Matthew & Maravelias, Christos T., 2011. "R&D pipeline management: Task interdependencies and risk management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 616-628, December.
    15. C Lucas & S A MirHassani & G Mitra & C A Poojari, 2001. "An application of Lagrangian relaxation to a capacity planning problem under uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(11), pages 1256-1266, November.
    16. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    17. Csaba I. Fábián & Gautam Mitra & Diana Roman & Victor Zverovich & Tibor Vajnai & Edit Csizmás & Olga Papp, 2011. "Portfolio Choice Models Based on Second-Order Stochastic Dominance Measures: An Overview and a Computational Study," International Series in Operations Research & Management Science, in: Marida Bertocchi & Giorgio Consigli & Michael A. H. Dempster (ed.), Stochastic Optimization Methods in Finance and Energy, edition 1, chapter 0, pages 441-469, Springer.
    18. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part I: Deterministic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 156-166.
    19. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    20. Patrizia Beraldi & Giorgio Consigli & Francesco De Simone & Gaetano Iaquinta & Antonio Violi, 2011. "Hedging Market and Credit Risk in Corporate Bond Portfolios," International Series in Operations Research & Management Science, in: Marida Bertocchi & Giorgio Consigli & Michael A. H. Dempster (ed.), Stochastic Optimization Methods in Finance and Energy, edition 1, chapter 0, pages 73-98, Springer.
    21. Dimitris Bertsimas & Sarah Stock Patterson, 1998. "The Air Traffic Flow Management Problem with Enroute Capacities," Operations Research, INFORMS, vol. 46(3), pages 406-422, June.
    22. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    23. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Teresa Ortuno, M., 2003. "BFC, A branch-and-fix coordination algorithmic framework for solving some types of stochastic pure and mixed 0-1 programs," European Journal of Operational Research, Elsevier, vol. 151(3), pages 503-519, December.
    24. Tsan-Ming Choi & Chun-Hung Chiu, 2012. "Risk Analysis in Stochastic Supply Chains," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-3869-4, January.
    25. Arthur Charpentier & Abder Oulidi, 2009. "Estimating allocations for Value-at-Risk portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 395-410, July.
    26. Leung, Stephen C.H. & Tsang, Sally O.S. & Ng, W.L. & Wu, Yue, 2007. "A robust optimization model for multi-site production planning problem in an uncertain environment," European Journal of Operational Research, Elsevier, vol. 181(1), pages 224-238, August.
    27. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    28. Escudero, L. F. & Galindo, E. & Garcia, G. & Gomez, E. & Sabau, V., 1999. "Schumann, a modeling framework for supply chain management under uncertainty," European Journal of Operational Research, Elsevier, vol. 119(1), pages 14-34, November.
    29. Dimitri Drapkin & Ralf Gollmer & Uwe Gotzes & Frederike Neise & Rüdiger Schultz, 2011. "Risk Management with Stochastic Dominance Models in Energy Systems with Dispersed Generation," International Series in Operations Research & Management Science, in: Marida Bertocchi & Giorgio Consigli & Michael A. H. Dempster (ed.), Stochastic Optimization Methods in Finance and Energy, edition 1, chapter 0, pages 253-271, Springer.
    30. Holger Heitsch & Werner Römisch, 2009. "Scenario tree reduction for multistage stochastic programs," Computational Management Science, Springer, vol. 6(2), pages 117-133, May.
    31. Miguel Carrión & Uwe Gotzes & Rüdiger Schultz, 2009. "Risk aversion for an electricity retailer with second-order stochastic dominance constraints," Computational Management Science, Springer, vol. 6(2), pages 233-250, May.
    32. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    33. Dentcheva, Darinka & Martinez, Gabriela, 2012. "Two-stage stochastic optimization problems with stochastic ordering constraints on the recourse," European Journal of Operational Research, Elsevier, vol. 219(1), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kostrova, Alisa & Britz, Wolfgang & Finger, Robert & Djanibekov, Utkur, 2016. "Real Options Approach And Stochastic Programming In Farm Level Analysis: The Case Of Short-Rotation Coppice Cultivation," 56th Annual Conference, Bonn, Germany, September 28-30, 2016 244864, German Association of Agricultural Economists (GEWISOLA).
    2. O’Sullivan, Dónal & Newman, Alexandra, 2015. "Optimization-based heuristics for underground mine scheduling," European Journal of Operational Research, Elsevier, vol. 241(1), pages 248-259.
    3. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    4. Kostrova, Alisa & Britz, Wolfgang & Djanibekov, Utkur & Finger, Robert, 2016. "Monte-Carlo Simulation and Stochastic Programming in Real Options Valuation: the Case of Perennial Energy Crop Cultivation," Discussion Papers 250253, University of Bonn, Institute for Food and Resource Economics.
    5. Nesbitt, Peter & Blake, Lewis R. & Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo K. & Newman, Alexandra & Brickey, Andrea, 2021. "Underground mine scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 294(1), pages 340-352.
    6. Bei, Xiaoqiang & Zhu, Xiaoyan & Coit, David W., 2019. "A risk-averse stochastic program for integrated system design and preventive maintenance planning," European Journal of Operational Research, Elsevier, vol. 276(2), pages 536-548.
    7. repec:ehu:biltok:14745 is not listed on IDEAS
    8. Savolainen, Jyrki, 2016. "Real options in metal mining project valuation: Review of literature," Resources Policy, Elsevier, vol. 50(C), pages 49-65.
    9. Reus, Lorenzo & Pagnoncelli, Bernardo & Armstrong, Margaret, 2019. "Better management of production incidents in mining using multistage stochastic optimization," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    10. King, Barry & Goycoolea, Marcos & Newman, A., 2017. "Optimizing the open pit-to-underground mining transition," European Journal of Operational Research, Elsevier, vol. 257(1), pages 297-309.
    11. Escudero, Laureano F. & Garín, María Araceli & Merino, María & Pérez, Gloria, 2016. "On time stochastic dominance induced by mixed integer-linear recourse in multistage stochastic programs," European Journal of Operational Research, Elsevier, vol. 249(1), pages 164-176.
    12. Baptista, Susana & Barbosa-Póvoa, Ana Paula & Escudero, Laureano F. & Gomes, Maria Isabel & Pizarro, Celeste, 2019. "On risk management of a two-stage stochastic mixed 0–1 model for the closed-loop supply chain design problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 91-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escudero, Laureano F. & Garín, María Araceli & Merino, María & Pérez, Gloria, 2016. "On time stochastic dominance induced by mixed integer-linear recourse in multistage stochastic programs," European Journal of Operational Research, Elsevier, vol. 249(1), pages 164-176.
    2. repec:ehu:biltok:14745 is not listed on IDEAS
    3. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    4. Agustı´n, A. & Alonso-Ayuso, A. & Escudero, L.F. & Pizarro, C., 2012. "On air traffic flow management with rerouting. Part II: Stochastic case," European Journal of Operational Research, Elsevier, vol. 219(1), pages 167-177.
    5. Alonso-Ayuso, A. & Escudero, L. F. & Garín, A. & Ortuño, M. T. & Pérez, G., 2005. "On the product selection and plant dimensioning problem under uncertainty," Omega, Elsevier, vol. 33(4), pages 307-318, August.
    6. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    7. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    8. Miller, Naomi & Ruszczynski, Andrzej, 2008. "Risk-adjusted probability measures in portfolio optimization with coherent measures of risk," European Journal of Operational Research, Elsevier, vol. 191(1), pages 193-206, November.
    9. Guy Meunier, 2014. "Risk Aversion and Technology Portfolios," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(4), pages 347-365, June.
    10. Walter Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    11. Mohd Azdi Maasar & Diana Roman & Paresh Date, 2022. "Risk minimisation using options and risky assets," Operational Research, Springer, vol. 22(1), pages 485-506, March.
    12. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    13. Beltran-Royo, C., 2017. "Two-stage stochastic mixed-integer linear programming: The conditional scenario approach," Omega, Elsevier, vol. 70(C), pages 31-42.
    14. Han Shu & Jacob Mays, 2022. "Beyond capacity: contractual form in electricity reliability obligations," Papers 2210.10858, arXiv.org.
    15. Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
    16. Shu, Han & Mays, Jacob, 2023. "Beyond capacity: Contractual form in electricity reliability obligations," Energy Economics, Elsevier, vol. 126(C).
    17. ABADA, Ibrahim & EHRENMANN, Andreas & SMEERS, Yves, 2014. "Endogenizing long-term contracts in gas market models," LIDAM Discussion Papers CORE 2014036, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Ibrahim Abada & Andreas Ehrenmann & Yves Smeers, 2017. "Modeling Gas Markets with Endogenous Long-Term Contracts," Operations Research, INFORMS, vol. 65(4), pages 856-877, August.
    19. Daniel R. Jiang & Warren B. Powell, 2018. "Risk-Averse Approximate Dynamic Programming with Quantile-Based Risk Measures," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 554-579, May.
    20. Liu, Rui Peng & Shapiro, Alexander, 2020. "Risk neutral reformulation approach to risk averse stochastic programming," European Journal of Operational Research, Elsevier, vol. 286(1), pages 21-31.
    21. Kallio, Markku & Dehghan Hardoroudi, Nasim, 2018. "Second-order stochastic dominance constrained portfolio optimization: Theory and computational tests," European Journal of Operational Research, Elsevier, vol. 264(2), pages 675-685.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:233:y:2014:i:3:p:711-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.