IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v282y2019i1d10.1007_s10479-018-2991-z.html
   My bibliography  Save this article

Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns

Author

Listed:
  • Davi Valladão

    (Pontifical Catholic University of Rio de Janeiro (PUC-Rio))

  • Thuener Silva

    (Pontifical Catholic University of Rio de Janeiro (PUC-Rio))

  • Marcus Poggi

    (Pontifical Catholic University of Rio de Janeiro (PUC-Rio))

Abstract

Dynamic portfolio optimization has a vast literature exploring different simplifications by virtue of computational tractability of the problem. Previous works provide solution methods considering unrealistic assumptions, such as no transactional costs, small number of assets, specific choices of utility functions and oversimplified price dynamics. Other more realistic strategies use heuristic solution approaches to obtain suitable investment policies. In this work, we propose a time-consistent risk-constrained dynamic portfolio optimization model with transactional costs and Markovian time-dependence. The proposed model is efficiently solved using a Markov chained stochastic dual dynamic programming algorithm. We impose one-period conditional value-at-risk constraints, arguing that it is reasonable to assume that an investor knows how much he is willing to lose in a given period. In contrast to dynamic risk measures as the objective function, our time-consistent model has relatively complete recourse and a straightforward lower bound, considering a maximization problem. We use the proposed model for approximately solving: (i) an illustrative problem with 3 assets and 1 factor with an autoregressive dynamic; (ii) a high-dimensional problem with 100 assets and 5 factors following a discrete Markov chain. In both cases, we empirically show that our approximate solution is near-optimal for the original problem and significantly outperforms selected (heuristic) benchmarks. To the best of our knowledge, this is the first systematic approach for solving realistic time-consistent risk-constrained dynamic asset allocation problems.

Suggested Citation

  • Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
  • Handle: RePEc:spr:annopr:v:282:y:2019:i:1:d:10.1007_s10479-018-2991-z
    DOI: 10.1007/s10479-018-2991-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2991-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2991-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Xing & Zhang, Kun, 2013. "Dynamic optimal portfolio choice in a jump-diffusion model with investment constraints," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1733-1746.
    2. Kouwenberg, Roy, 2001. "Scenario generation and stochastic programming models for asset liability management," European Journal of Operational Research, Elsevier, vol. 134(2), pages 279-292, October.
    3. Valladão, Davi M. & Veiga, Álvaro & Veiga, Geraldo, 2014. "A multistage linear stochastic programming model for optimal corporate debt management," European Journal of Operational Research, Elsevier, vol. 237(1), pages 303-311.
    4. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    5. Muthuraman, Kumar, 2007. "A computational scheme for optimal investment - consumption with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1132-1159, April.
    6. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    7. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    8. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.
    9. Robert J. Elliott & Tak Kuen Siu, 2014. "Strategic Asset Allocation Under a Fractional Hidden Markov Model," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 609-626, September.
    10. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    11. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
    12. Tobias Rydén & Timo Teräsvirta & Stefan Åsbrink, 1998. "Stylized facts of daily return series and the hidden Markov model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(3), pages 217-244.
    13. Robert J. Elliott & John van der Hoek, 1997. "An application of hidden Markov models to asset allocation problems (*)," Finance and Stochastics, Springer, vol. 1(3), pages 229-238.
    14. George M. Constantinides, 1979. "Multiperiod Consumption and Investment Behavior with Convex Transactions Costs," Management Science, INFORMS, vol. 25(11), pages 1127-1137, November.
    15. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    16. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2008. "A dynamic stochastic programming model for international portfolio management," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1501-1524, March.
    17. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    18. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    19. MOSSIN, Jan, 1968. "Optimal multiperiod portfolio policies," LIDAM Reprints CORE 19, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    21. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    22. Mei, Xiaoling & DeMiguel, Victor & Nogales, Francisco J., 2016. "Multiperiod portfolio optimization with multiple risky assets and general transaction costs," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 108-120.
    23. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    24. David B. Brown & James E. Smith, 2011. "Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds," Management Science, INFORMS, vol. 57(10), pages 1752-1770, October.
    25. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    26. David B. Brown & James E. Smith & Peng Sun, 2010. "Information Relaxations and Duality in Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 58(4-part-1), pages 785-801, August.
    27. Z. L. Chen & W. B. Powell, 1999. "Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 497-524, September.
    28. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    29. Bruno, Sergio & Ahmed, Shabbir & Shapiro, Alexander & Street, Alexandre, 2016. "Risk neutral and risk averse approaches to multistage renewable investment planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 250(3), pages 979-989.
    30. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    31. Björn Bick & Holger Kraft & Claus Munk, 2013. "Solving Constrained Consumption-Investment Problems by Simulation of Artificial Market Strategies," Management Science, INFORMS, vol. 59(2), pages 485-503, June.
    32. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
    33. Miles Lubin & Iain Dunning, 2015. "Computing in Operations Research Using Julia," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 238-248, May.
    34. Davi Michel Valladão & Álvaro Veiga & Alexandre Street, 2018. "A Linear Stochastic Programming Model for Optimal Leveraged Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 1021-1032, April.
    35. Eugene F. Fama & Kenneth R. French, 2016. "Dissecting Anomalies with a Five-Factor Model," The Review of Financial Studies, Society for Financial Studies, vol. 29(1), pages 69-103.
    36. Stephen P. Bradley & Dwight B. Crane, 1972. "A Dynamic Model for Bond Portfolio Management," Management Science, INFORMS, vol. 19(2), pages 139-151, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. J. Hermoso-Orzáez & J. Garzón-Moreno, 2022. "Risk management methodology in the supply chain: a case study applied," Annals of Operations Research, Springer, vol. 313(2), pages 1051-1075, June.
    2. Lorenzo Reus & Guillermo Alexander Sepúlveda-Hurtado, 2023. "Foreign exchange trading and management with the stochastic dual dynamic programming method," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-38, December.
    3. Street, Alexandre & Valladão, Davi & Lawson, André & Velloso, Alexandre, 2020. "Assessing the cost of the Hazard-Decision simplification in multistage stochastic hydrothermal scheduling," Applied Energy, Elsevier, vol. 280(C).
    4. Thuener Silva & Davi Valladão & Tito Homem-de-Mello, 2021. "A data-driven approach for a class of stochastic dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 80(3), pages 687-729, December.
    5. Pagnoncelli, Bernardo K. & Homem-de-Mello, Tito & Lagos, Guido & Castañeda, Pablo & García, Javier, 2024. "Solving constrained consumption–investment problems by decomposition algorithms," European Journal of Operational Research, Elsevier, vol. 319(1), pages 292-302.
    6. Simon Thevenin & Yossiri Adulyasak & Jean-François Cordeau, 2022. "Stochastic Dual Dynamic Programming for Multiechelon Lot Sizing with Component Substitution," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3151-3169, November.
    7. Lorenzo Reus & Rodolfo Prado, 2022. "Need to Meet Investment Goals? Track Synthetic Indexes with the SDDP Method," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 47-69, June.
    8. Larissa de Oliveira Resende & Davi Valladão & Bernardo Vieira Bezerra & Yasmin Monteiro Cyrillo, 2021. "Assessing the value of natural gas underground storage in the Brazilian system via stochastic dual dynamic programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 106-124, April.
    9. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    2. Thuener Silva & Davi Valladão & Tito Homem-de-Mello, 2021. "A data-driven approach for a class of stochastic dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 80(3), pages 687-729, December.
    3. Davi Michel Valladão & Álvaro Veiga & Alexandre Street, 2018. "A Linear Stochastic Programming Model for Optimal Leveraged Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 1021-1032, April.
    4. Mei, Xiaoling & Nogales, Francisco J., 2018. "Portfolio selection with proportional transaction costs and predictability," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 131-151.
    5. David B. Brown & James E. Smith, 2011. "Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds," Management Science, INFORMS, vol. 57(10), pages 1752-1770, October.
    6. repec:cte:wsrepe:ws1521 is not listed on IDEAS
    7. Yao, Haixiang & Li, Danping & Wu, Huiling, 2022. "Dynamic trading with uncertain exit time and transaction costs in a general Markov market," International Review of Financial Analysis, Elsevier, vol. 84(C).
    8. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2016. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Papers 1610.07694, arXiv.org, revised Jun 2019.
    9. Miguel, Víctor de & Nogales, Francisco J., 2013. "Multiperiod portfolio selection with transaction and market-impact costs," DES - Working Papers. Statistics and Econometrics. WS ws131615, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    11. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    12. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
    13. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    14. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    15. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    16. Collin-Dufresne, Pierre & Daniel, Kent & Sağlam, Mehmet, 2020. "Liquidity regimes and optimal dynamic asset allocation," Journal of Financial Economics, Elsevier, vol. 136(2), pages 379-406.
    17. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    18. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    19. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    20. Schur, Rouven & Gönsch, Jochen & Hassler, Michael, 2019. "Time-consistent, risk-averse dynamic pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 587-603.
    21. Hung-Hsi Huang & David Jou, 2009. "Multiperiod dynamic investment for a generalized situation," Applied Financial Economics, Taylor & Francis Journals, vol. 19(21), pages 1761-1766.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:282:y:2019:i:1:d:10.1007_s10479-018-2991-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.