IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v261y2017i3p984-993.html
   My bibliography  Save this article

Higher-degree stochastic dominance optimality and efficiency

Author

Listed:
  • Fang, Yi
  • Post, Thierry

Abstract

We characterize a range of Stochastic Dominance (SD) relations by means of finite systems of convex inequalities. For ‘SD optimality’ of degree 1 to 4 and ‘SD efficiency’ of degree 2 to 5, we obtain exact systems that can be implemented using Linear Programming or Convex Quadratic Programming. For SD optimality of degree five and higher, and SD efficiency of degree six and higher, we obtain necessary conditions. We use separate model variables for the values of the derivatives of all relevant orders at all relevant outcome levels, which allows for preference restrictions beyond the standard sign restrictions. Our systems of inequalities can be interpreted in terms of piecewise polynomial utility functions with a number of pieces that increases with the number of outcomes and the degree of SD. An empirical study analyzes the relevance of higher-order risk preferences for comparing a passive stock market index with actively managed stock portfolios in standard data sets from the empirical asset pricing literature.

Suggested Citation

  • Fang, Yi & Post, Thierry, 2017. "Higher-degree stochastic dominance optimality and efficiency," European Journal of Operational Research, Elsevier, vol. 261(3), pages 984-993.
  • Handle: RePEc:eee:ejores:v:261:y:2017:i:3:p:984-993
    DOI: 10.1016/j.ejor.2017.03.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717302394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.03.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fishburn, Peter C., 1974. "Convex stochastic dominance with continuous distribution functions," Journal of Economic Theory, Elsevier, vol. 7(2), pages 143-158, February.
    2. Whitmore, G A, 1970. "Third-Degree Stochastic Dominance," American Economic Review, American Economic Association, vol. 60(3), pages 457-459, June.
    3. Bawa, Vijay S, et al, 1985. "On Determination of Stochastic Dominance Optimal Sets," Journal of Finance, American Finance Association, vol. 40(2), pages 417-431, June.
    4. R. G. Vickson, 1975. "Stochastic Dominance Tests for Decreasing Absolute Risk Aversion. I. Discrete Random Variables," Management Science, INFORMS, vol. 21(12), pages 1438-1446, August.
    5. Vickson, R. G., 1975. "Stochastic Dominance for Decreasing Absolute Risk Aversion," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 10(5), pages 799-811, December.
    6. Roman, Diana & Mitra, Gautam & Zverovich, Victor, 2013. "Enhanced indexation based on second-order stochastic dominance," European Journal of Operational Research, Elsevier, vol. 228(1), pages 273-281.
    7. Kopa, Miloš & Post, Thierry, 2009. "A Portfolio Optimality Test Based on the First-Order Stochastic Dominance Criterion," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(5), pages 1103-1124, October.
    8. repec:bla:jfinan:v:58:y:2003:i:5:p:1905-1932 is not listed on IDEAS
    9. Horowitz, J., 1996. "Bootstrap Critical Values For Tests Based On The Smoothed Maximum Score Estimator," SFB 373 Discussion Papers 1996,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    10. Meyer, Jack, 1977. "Second Degree Stochastic Dominance with Respect to a Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 477-487, June.
    11. Porter, R. Burr & Wart, James R. & Ferguson, Donald L., 1973. "Efficient Algorithms for Conducting Stochastic Dominance Tests on Large Numbers of Portfolios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(1), pages 71-81, January.
    12. Larry Y. Tzeng & Rachel J. Huang & Pai-Ta Shih, 2013. "Revisiting Almost Second-Degree Stochastic Dominance," Management Science, INFORMS, vol. 59(5), pages 1250-1254, May.
    13. Benjamin Armbruster & Erick Delage, 2015. "Decision Making Under Uncertainty When Preference Information Is Incomplete," Management Science, INFORMS, vol. 61(1), pages 111-128, January.
    14. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 335-346.
    15. Vijay S. Bawa & Eric B. Lindenberg & Lawrence C. Rafsky, 1979. "An Efficient Algorithm to Determine Stochastic Dominance Admissible Sets," Management Science, INFORMS, vol. 25(7), pages 609-622, July.
    16. Caballe, Jordi & Pomansky, Alexey, 1996. "Mixed Risk Aversion," Journal of Economic Theory, Elsevier, vol. 71(2), pages 485-513, November.
    17. James P. Quirk & Rubin Saposnik, 1962. "Admissibility and Measurable Utility Functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 29(2), pages 140-146.
    18. Dupačová, Jitka & Kopa, Miloš, 2014. "Robustness of optimal portfolios under risk and stochastic dominance constraints," European Journal of Operational Research, Elsevier, vol. 234(2), pages 434-441.
    19. Louis Eeckhoudt & Harris Schlesinger, 2006. "Putting Risk in Its Proper Place," American Economic Review, American Economic Association, vol. 96(1), pages 280-289, March.
    20. Scaillet, Olivier & Topaloglou, Nikolas, 2010. "Testing for Stochastic Dominance Efficiency," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 169-180.
    21. Thierry Post, 2003. "Empirical Tests for Stochastic Dominance Efficiency," Journal of Finance, American Finance Association, vol. 58(5), pages 1905-1931, October.
    22. Podinovski, Vladislav V., 2014. "Decision making under uncertainty with unknown utility function and rank-ordered probabilities," European Journal of Operational Research, Elsevier, vol. 239(2), pages 537-541.
    23. Hu, Jian & Homem-de-Mello, Tito & Mehrotra, Sanjay, 2014. "Stochastically weighted stochastic dominance concepts with an application in capital budgeting," European Journal of Operational Research, Elsevier, vol. 232(3), pages 572-583.
    24. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    25. Lizyayev, Andrey & Ruszczyński, Andrzej, 2012. "Tractable Almost Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 218(2), pages 448-455.
    26. Andrey Lizyayev, 2012. "Stochastic dominance efficiency analysis of diversified portfolios: classification, comparison and refinements," Annals of Operations Research, Springer, vol. 196(1), pages 391-410, July.
    27. Joel L. Horowitz, 1996. "Bootstrap Critical Values for Tests Based on the Smoothed Maximum Score Estimator," Econometrics 9603003, University Library of Munich, Germany.
    28. Timo Kuosmanen, 2004. "Efficient Diversification According to Stochastic Dominance Criteria," Management Science, INFORMS, vol. 50(10), pages 1390-1406, October.
    29. Dybvig, Philip H & Ingersoll, Jonathan E, Jr, 1982. "Mean-Variance Theory in Complete Markets," The Journal of Business, University of Chicago Press, vol. 55(2), pages 233-251, April.
    30. Post, Thierry, 2016. "Standard Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1009-1020.
    31. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    32. Post, Thierry & Versijp, Philippe, 2007. "Multivariate Tests for Stochastic Dominance Efficiency of a Given Portfolio," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(2), pages 489-515, June.
    33. Iñaki R. Longarela, 2016. "A Characterization of the SSD-Efficient Frontier of Portfolio Weights by Means of a Set of Mixed-Integer Linear Constraints," Management Science, INFORMS, vol. 62(12), pages 3549-3554, December.
    34. Josef Hadar & Tae Kun Seo, 1988. "Asset Proportions in Optimal Portfolios," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 55(3), pages 459-468.
    35. Eeckhoudt, Louis & Fiori, Anna Maria & Rosazza Gianin, Emanuela, 2016. "Loss-averse preferences and portfolio choices: An extension," European Journal of Operational Research, Elsevier, vol. 249(1), pages 224-230.
    36. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    37. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    38. Meskarian, Rudabeh & Xu, Huifu & Fliege, Jörg, 2012. "Numerical methods for stochastic programs with second order dominance constraints with applications to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 216(2), pages 376-385.
    39. Moshe Leshno & Haim Levy, 2002. "Preferred by "All" and Preferred by "Most" Decision Makers: Almost Stochastic Dominance," Management Science, INFORMS, vol. 48(8), pages 1074-1085, August.
    40. Andrey Lizyayev, 2012. "Stochastic Dominance: Convexity And Some Efficiency Tests," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(05), pages 1-19.
    41. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    42. Haim Shalit & Shlomo Yitzhaki, 1994. "Marginal Conditional Stochastic Dominance," Management Science, INFORMS, vol. 40(5), pages 670-684, May.
    43. Antonella Basso & Paolo Pianca, 1997. "Decreasing Absolute Risk Aversion and Option Pricing Bounds," Management Science, INFORMS, vol. 43(2), pages 206-216, February.
    44. Post, Thierry & Kopa, Miloš, 2013. "General linear formulations of stochastic dominance criteria," European Journal of Operational Research, Elsevier, vol. 230(2), pages 321-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asano, Takao & Osaki, Yusuke, 2021. "Optimal investment under ambiguous technology shocks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 304-311.
    2. Jia Liu & Zhiping Chen & Giorgio Consigli, 2021. "Interval-based stochastic dominance: theoretical framework and application to portfolio choices," Annals of Operations Research, Springer, vol. 307(1), pages 329-361, December.
    3. Anderson, Gordon & Leo, Teng Wah, 2021. "Sufficient conditions for jth order stochastic dominance for discrete cardinal variables, and their formulae," Economics Letters, Elsevier, vol. 209(C).
    4. Mehmet Pinar & Thanasis Stengos & Nikolas Topaloglou, 2022. "Stochastic dominance spanning and augmenting the human development index with institutional quality," Annals of Operations Research, Springer, vol. 315(1), pages 341-369, August.
    5. Kallio, Markku & Dehghan Hardoroudi, Nasim, 2019. "Advancements in stochastic dominance efficiency tests," European Journal of Operational Research, Elsevier, vol. 276(2), pages 790-794.
    6. Vinod, H.D., 2024. "Portfolio choice algorithms, including exact stochastic dominance," Journal of Financial Stability, Elsevier, vol. 70(C).
    7. Chan, Raymond H. & Chow, Sheung-Chi & Guo, Xu & Wong, Wing-Keung, 2022. "Central moments, stochastic dominance, moment rule, and diversification with an application," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    8. Light, Bar & Perlroth, Andres, 2021. "The Family of Alpha,[a,b] Stochastic Orders: Risk vs. Expected Value," Journal of Mathematical Economics, Elsevier, vol. 96(C).
    9. Courtois, Olivier Le & Xu, Xia, 2023. "Semivariance below the maximum: Assessing the performance of economic and financial prospects," Journal of Economic Behavior & Organization, Elsevier, vol. 209(C), pages 185-199.
    10. Tatiana Morozova & Ravil Akhmadeev & Liubov Lehoux & Alexei Valerievich Yumashev & Galina Vladimirovna Meshkova & Marina Lukiyanova, 2020. "Crypto asset assessment models in financial reporting content typologies," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(3), pages 2196-2212, March.
    11. Fang, Yi & Post, Thierry, 2022. "Optimal portfolio choice for higher-order risk averters," Journal of Banking & Finance, Elsevier, vol. 137(C).
    12. Kolokolova, Olga & Xu, Xia, 2024. "Enhancing betting against beta with stochastic dominance," Journal of Empirical Finance, Elsevier, vol. 76(C).
    13. Giovanni Bernardo & Irene Brunetti & Mehmet Pinar & Thanasis Stengos, 2021. "Measuring the presence of organized crime across Italian provinces: a sensitivity analysis," European Journal of Law and Economics, Springer, vol. 51(1), pages 31-95, February.
    14. Kolokolova, Olga & Le Courtois, Olivier & Xu, Xia, 2022. "Is the index efficient? A worldwide tour with stochastic dominance," Journal of Financial Markets, Elsevier, vol. 59(PB).
    15. Pinar, Mehmet & Stengos, Thanasis & Topaloglou, Nikolas, 2020. "On the construction of a feasible range of multidimensional poverty under benchmark weight uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 415-427.
    16. Takao Asano & Yusuke Osaki, 2020. "Portfolio allocation problems between risky and ambiguous assets," Annals of Operations Research, Springer, vol. 284(1), pages 63-79, January.
    17. Liesiö, Juuso & Xu, Peng & Kuosmanen, Timo, 2020. "Portfolio diversification based on stochastic dominance under incomplete probability information," European Journal of Operational Research, Elsevier, vol. 286(2), pages 755-768.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thierry Post & Miloš Kopa, 2017. "Portfolio Choice Based on Third-Degree Stochastic Dominance," Management Science, INFORMS, vol. 63(10), pages 3381-3392, October.
    2. Kallio, Markku & Dehghan Hardoroudi, Nasim, 2018. "Second-order stochastic dominance constrained portfolio optimization: Theory and computational tests," European Journal of Operational Research, Elsevier, vol. 264(2), pages 675-685.
    3. Post, Thierry & Kopa, Miloš, 2013. "General linear formulations of stochastic dominance criteria," European Journal of Operational Research, Elsevier, vol. 230(2), pages 321-332.
    4. Thierry Post & Yi Fang & Miloš Kopa, 2015. "Linear Tests for Decreasing Absolute Risk Aversion Stochastic Dominance," Management Science, INFORMS, vol. 61(7), pages 1615-1629, July.
    5. Post, Thierry, 2016. "Standard Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1009-1020.
    6. Christodoulakis, George & Mohamed, Abdulkadir & Topaloglou, Nikolas, 2018. "Optimal privatization portfolios in the presence of arbitrary risk aversion," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1172-1191.
    7. Andrey Lizyayev, 2012. "Stochastic dominance efficiency analysis of diversified portfolios: classification, comparison and refinements," Annals of Operations Research, Springer, vol. 196(1), pages 391-410, July.
    8. Jia Liu & Zhiping Chen & Giorgio Consigli, 2021. "Interval-based stochastic dominance: theoretical framework and application to portfolio choices," Annals of Operations Research, Springer, vol. 307(1), pages 329-361, December.
    9. Kolokolova, Olga & Le Courtois, Olivier & Xu, Xia, 2022. "Is the index efficient? A worldwide tour with stochastic dominance," Journal of Financial Markets, Elsevier, vol. 59(PB).
    10. Thierry Post & Valerio Potì, 2017. "Portfolio Analysis Using Stochastic Dominance, Relative Entropy, and Empirical Likelihood," Management Science, INFORMS, vol. 63(1), pages 153-165, January.
    11. Daskalaki, Charoula & Skiadopoulos, George & Topaloglou, Nikolas, 2017. "Diversification benefits of commodities: A stochastic dominance efficiency approach," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 250-269.
    12. Chan, Raymond H. & Clark, Ephraim & Wong, Wing-Keung, 2016. "On the Third Order Stochastic Dominance for Risk-Averse and Risk-Seeking Investors with Analysis of their Traditional and Internet Stocks," MPRA Paper 75002, University Library of Munich, Germany.
    13. Francesco Cesarone & Raffaello Cesetti & Giuseppe Orlando & Manuel Luis Martino & Jacopo Maria Ricci, 2022. "Comparing SSD-Efficient Portfolios with a Skewed Reference Distribution," Mathematics, MDPI, vol. 11(1), pages 1-20, December.
    14. Courtois, Olivier Le & Xu, Xia, 2023. "Semivariance below the maximum: Assessing the performance of economic and financial prospects," Journal of Economic Behavior & Organization, Elsevier, vol. 209(C), pages 185-199.
    15. Post, Thierry & Karabatı, Selçuk & Arvanitis, Stelios, 2018. "Portfolio optimization based on stochastic dominance and empirical likelihood," Journal of Econometrics, Elsevier, vol. 206(1), pages 167-186.
    16. Liesiö, Juuso & Kallio, Markku & Argyris, Nikolaos, 2023. "Incomplete risk-preference information in portfolio decision analysis," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1084-1098.
    17. Light, Bar & Perlroth, Andres, 2021. "The Family of Alpha,[a,b] Stochastic Orders: Risk vs. Expected Value," Journal of Mathematical Economics, Elsevier, vol. 96(C).
    18. Liesiö, Juuso & Xu, Peng & Kuosmanen, Timo, 2020. "Portfolio diversification based on stochastic dominance under incomplete probability information," European Journal of Operational Research, Elsevier, vol. 286(2), pages 755-768.
    19. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, and Big Data: Connections," Documentos de Trabajo del ICAE 2018-09, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    20. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, And Big Data: Connections," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 36-94, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:261:y:2017:i:3:p:984-993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.