IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v260y2018i1d10.1007_s10479-016-2387-x.html
   My bibliography  Save this article

Individual optimal pension allocation under stochastic dominance constraints

Author

Listed:
  • Miloš Kopa

    (Charles University)

  • Vittorio Moriggia

    (University of Bergamo)

  • Sebastiano Vitali

    (University of Bergamo)

Abstract

An individual investor has to decide how to allocate his/her savings from a retirement perspective. This problem covers a long-term horizon. In this paper we consider a 40-year horizon formulating a multi-criteria multistage program with stochastic dominance constraints in an intermediate stage and in the final stage. As we are dealing with a real problem and we have formulated the model in cooperation with a commercial Italian bank, the intermediate stage corresponds to a possible withdrawal allowed by the Italian pension system. The sources of uncertainty considered are: the financial returns, the interest rate evolution, the investor’s salary process and a considerable withdrawal event. We include a set of portfolio constraints according to the pension plan regulation. The objective of the model is to minimize the Average Value at Risk Deviation measure and to satisfy wealth goals. Three different wealth target formulations are considered: a deterministic wealth target (i.e. a comparison between the accumulated average wealth and a fixed threshold) and two stochastic dominance relations—the first order and the second order—introducing a benchmark portfolio and then requiring the optimal portfolio to dominate the benchmark. In particular, we prove that solutions obtained under stochastic dominance constraints ensure a safer allocation while still guaranteeing good returns. Moreover, we show how the withdrawal event affects the solution in terms of allocation in each of the three frameworks. Finally, the sensitivity and convergence of the stochastic solutions and computational issues are investigated.

Suggested Citation

  • Miloš Kopa & Vittorio Moriggia & Sebastiano Vitali, 2018. "Individual optimal pension allocation under stochastic dominance constraints," Annals of Operations Research, Springer, vol. 260(1), pages 255-291, January.
  • Handle: RePEc:spr:annopr:v:260:y:2018:i:1:d:10.1007_s10479-016-2387-x
    DOI: 10.1007/s10479-016-2387-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2387-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2387-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. Escudero, Laureano F. & Garín, María Araceli & Merino, María & Pérez, Gloria, 2016. "On time stochastic dominance induced by mixed integer-linear recourse in multistage stochastic programs," European Journal of Operational Research, Elsevier, vol. 249(1), pages 164-176.
    3. Russell Gerrard & Bjarne Højgaard & Elena Vigna, 2012. "Choosing the optimal annuitization time post-retirement," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1143-1159, September.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. Richard, Scott F., 1975. "Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model," Journal of Financial Economics, Elsevier, vol. 2(2), pages 187-203, June.
    6. E. A. Medova & J. K. Murphy & A. P. Owen & K. Rehman, 2008. "Individual asset liability management," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 547-560.
    7. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 335-346.
    8. James P. Quirk & Rubin Saposnik, 1962. "Admissibility and Measurable Utility Functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 29(2), pages 140-146.
    9. Dupačová, Jitka & Kopa, Miloš, 2014. "Robustness of optimal portfolios under risk and stochastic dominance constraints," European Journal of Operational Research, Elsevier, vol. 234(2), pages 434-441.
    10. Andrea Consiglio & Flavio Cocco & Stavros Zenios, 2007. "Scenario optimization asset and liability modelling for individual investors," Annals of Operations Research, Springer, vol. 152(1), pages 167-191, July.
    11. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    12. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    13. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    14. Gerrard, Russell & Haberman, Steven & Vigna, Elena, 2004. "Optimal investment choices post-retirement in a defined contribution pension scheme," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 321-342, October.
    15. Timo Kuosmanen, 2004. "Efficient Diversification According to Stochastic Dominance Criteria," Management Science, INFORMS, vol. 50(10), pages 1390-1406, October.
    16. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    17. Milevsky, Moshe A. & Young, Virginia R., 2007. "Annuitization and asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 3138-3177, September.
    18. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    19. Darinka Dentcheva & Andrzej Ruszczynski, 2004. "Optimization Under First Order Stochastic Dominance Constraints," GE, Growth, Math methods 0403002, University Library of Munich, Germany, revised 07 Aug 2005.
    20. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    21. Xi Yang & Jacek Gondzio & Andreas Grothey, 2010. "Asset liability management modelling with risk control by stochastic dominance," Journal of Asset Management, Palgrave Macmillan, vol. 11(2), pages 73-93, June.
    22. Cai, Jun & Ge, Chenliang, 2012. "Multi-objective private wealth allocation without subportfolios," Economic Modelling, Elsevier, vol. 29(3), pages 900-907.
    23. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    24. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    25. Blake, David & Wright, Douglas & Zhang, Yumeng, 2013. "Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 37(1), pages 195-209.
    26. Russell Gerrard & Steven Haberman & Elena Vigna, 2006. "The Management of Decumulation Risks in a Defined Contribution Pension Plan," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(1), pages 84-110.
    27. Soňa Kilianová & Georg Pflug, 2009. "Optimal pension fund management under multi-period risk minimization," Annals of Operations Research, Springer, vol. 166(1), pages 261-270, February.
    28. Rendleman, Richard J. & Bartter, Brit J., 1980. "The Pricing of Options on Debt Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(1), pages 11-24, March.
    29. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    30. Jitka Dupačová & Miloš Kopa, 2012. "Robustness in stochastic programs with risk constraints," Annals of Operations Research, Springer, vol. 200(1), pages 55-74, November.
    31. Wolfram J. Horneff & Raimond H. Maurer & Michael Z. Stamos, 2008. "Optimal Gradual Annuitization: Quantifying the Costs of Switching to Annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(4), pages 1019-1038, December.
    32. Post, Thierry & Kopa, Miloš, 2013. "General linear formulations of stochastic dominance criteria," European Journal of Operational Research, Elsevier, vol. 230(2), pages 321-332.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miloš Kopa & Tomáš Rusý, 2021. "A decision-dependent randomness stochastic program for asset–liability management model with a pricing decision," Annals of Operations Research, Springer, vol. 299(1), pages 241-271, April.
    2. Maram Alwohaibi & Diana Roman, 2018. "ALM models based on second order stochastic dominance," Computational Management Science, Springer, vol. 15(2), pages 187-211, June.
    3. Jia Liu & Zhiping Chen & Giorgio Consigli, 2021. "Interval-based stochastic dominance: theoretical framework and application to portfolio choices," Annals of Operations Research, Springer, vol. 307(1), pages 329-361, December.
    4. František Zapletal & Martin Šmíd & Miloš Kopa, 2020. "Multi-stage emissions management of a steel company," Annals of Operations Research, Springer, vol. 292(2), pages 735-751, September.
    5. Domínguez, Ruth & Vitali, Sebastiano & Carrión, Miguel & Moriggia, Vittorio, 2021. "Analysing decarbonizing strategies in the European power system applying stochastic dominance constraints," Energy Economics, Elsevier, vol. 101(C).
    6. Sergio Ortobelli Lozza & Enrico Angelelli & Alda Ndoci, 2019. "Timing portfolio strategies with exponential Lévy processes," Computational Management Science, Springer, vol. 16(1), pages 97-127, February.
    7. Markéta Horejšová & Sebastiano Vitali & Miloš Kopa & Vittorio Moriggia, 2020. "Evaluation of scenario reduction algorithms with nested distance," Computational Management Science, Springer, vol. 17(2), pages 241-275, June.
    8. Mehmet Pinar & Thanasis Stengos & Nikolas Topaloglou, 2022. "Stochastic dominance spanning and augmenting the human development index with institutional quality," Annals of Operations Research, Springer, vol. 315(1), pages 341-369, August.
    9. Pierre Devolder & Susanna Levantesi & Massimiliano Menzietti, 2021. "Automatic balance mechanisms for notional defined contribution pension systems guaranteeing social adequacy and financial sustainability: an application to the Italian pension system," Annals of Operations Research, Springer, vol. 299(1), pages 765-795, April.
    10. Yu Mei & Zhiping Chen & Jia Liu & Bingbing Ji, 2022. "Multi-stage portfolio selection problem with dynamic stochastic dominance constraints," Journal of Global Optimization, Springer, vol. 83(3), pages 585-613, July.
    11. Giorgio Consigli & Vittorio Moriggia & Sebastiano Vitali, 2020. "Long-term individual financial planning under stochastic dominance constraints," Annals of Operations Research, Springer, vol. 292(2), pages 973-1000, September.
    12. Michal Mešťan & Ivan Králik & Matej Žofaj & Nikola Karkošiaková & Audrius Kabašinskas, 2021. "Projections of pension benefits in supplementary pension saving scheme in Slovakia," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 687-712, June.
    13. Dávid Zoltán Szabó & Zsolt Bihary, 2023. "The riskiness of stock versus money market investment with stochastic rates," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 393-415, June.
    14. Sebastiano Vitali & Vittorio Moriggia, 2021. "Pension fund management with investment certificates and stochastic dominance," Annals of Operations Research, Springer, vol. 299(1), pages 273-292, April.
    15. Barbora Petrová, 2019. "Multistage portfolio optimization with multivariate dominance constraints," Computational Management Science, Springer, vol. 16(1), pages 17-46, February.
    16. Moriggia, Vittorio & Kopa, Miloš & Vitali, Sebastiano, 2019. "Pension fund management with hedging derivatives, stochastic dominance and nodal contamination," Omega, Elsevier, vol. 87(C), pages 127-141.
    17. Domínguez, R. & Vitali, S., 2021. "Multi-chronological hierarchical clustering to solve capacity expansion problems with renewable sources," Energy, Elsevier, vol. 227(C).
    18. Esfandi, Elaheh & Mousavi, Mir Hossein & Moshrefi, Rassam & Farhang-Moghaddam, Babak, 2020. "Insurer Optimal Asset Allocation in a Small and Closed Economy: The Case of Iran’s Social Security Organization," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 15(4), pages 445-461, October.
    19. Audrius Kabašinskas & Kristina Šutienė & Miloš Kopa & Kęstutis Lukšys & Kazimieras Bagdonas, 2020. "Dominance-Based Decision Rules for Pension Fund Selection under Different Distributional Assumptions," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    20. Sebastiano Vitali & Ruth Domínguez & Vittorio Moriggia, 2021. "Comparing stage-scenario with nodal formulation for multistage stochastic problems," 4OR, Springer, vol. 19(4), pages 613-631, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Consigli & Vittorio Moriggia & Sebastiano Vitali, 2020. "Long-term individual financial planning under stochastic dominance constraints," Annals of Operations Research, Springer, vol. 292(2), pages 973-1000, September.
    2. Miloš Kopa & Tomáš Rusý, 2021. "A decision-dependent randomness stochastic program for asset–liability management model with a pricing decision," Annals of Operations Research, Springer, vol. 299(1), pages 241-271, April.
    3. Sebastiano Vitali & Vittorio Moriggia & Miloš Kopa, 2017. "Optimal pension fund composition for an Italian private pension plan sponsor," Computational Management Science, Springer, vol. 14(1), pages 135-160, January.
    4. Moriggia, Vittorio & Kopa, Miloš & Vitali, Sebastiano, 2019. "Pension fund management with hedging derivatives, stochastic dominance and nodal contamination," Omega, Elsevier, vol. 87(C), pages 127-141.
    5. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    6. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    7. repec:uts:finphd:40 is not listed on IDEAS
    8. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    9. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    10. Jia Liu & Zhiping Chen & Giorgio Consigli, 2021. "Interval-based stochastic dominance: theoretical framework and application to portfolio choices," Annals of Operations Research, Springer, vol. 307(1), pages 329-361, December.
    11. Sebastiano Vitali & Vittorio Moriggia, 2021. "Pension fund management with investment certificates and stochastic dominance," Annals of Operations Research, Springer, vol. 299(1), pages 273-292, April.
    12. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, September.
    13. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    14. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.
    15. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    16. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    17. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    18. Merton, Robert, 1990. "Capital market theory and the pricing of financial securities," Handbook of Monetary Economics, in: B. M. Friedman & F. H. Hahn (ed.), Handbook of Monetary Economics, edition 1, volume 1, chapter 11, pages 497-581, Elsevier.
    19. Daskalaki, Charoula & Skiadopoulos, George & Topaloglou, Nikolas, 2017. "Diversification benefits of commodities: A stochastic dominance efficiency approach," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 250-269.
    20. Zura Kakushadze, 2015. "Coping with Negative Short-Rates," Papers 1502.06074, arXiv.org, revised Aug 2015.
    21. Kallio, Markku & Dehghan Hardoroudi, Nasim, 2018. "Second-order stochastic dominance constrained portfolio optimization: Theory and computational tests," European Journal of Operational Research, Elsevier, vol. 264(2), pages 675-685.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:260:y:2018:i:1:d:10.1007_s10479-016-2387-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.