IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v230y2013i2p321-332.html
   My bibliography  Save this article

General linear formulations of stochastic dominance criteria

Author

Listed:
  • Post, Thierry
  • Kopa, Miloš

Abstract

We develop and implement linear formulations of general Nth order stochastic dominance criteria for discrete probability distributions. Our approach is based on a piece-wise polynomial representation of utility and its derivatives and can be implemented by solving a relatively small system of linear inequalities. This approach allows for comparing a given prospect with a discrete set of alternative prospects as well as for comparison with a polyhedral set of linear combinations of prospects. We also derive a linear dual formulation in terms of lower partial moments and co-lower partial moments. An empirical application to historical stock market data suggests that the passive stock market portfolio is highly inefficient relative to actively managed portfolios for all investment horizons and for nearly all investors. The results also illustrate that the mean–variance rule and second-order stochastic dominance rule may not detect market portfolio inefficiency because of non-trivial violations of non-satiation and prudence.

Suggested Citation

  • Post, Thierry & Kopa, Miloš, 2013. "General linear formulations of stochastic dominance criteria," European Journal of Operational Research, Elsevier, vol. 230(2), pages 321-332.
  • Handle: RePEc:eee:ejores:v:230:y:2013:i:2:p:321-332
    DOI: 10.1016/j.ejor.2013.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713003135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fishburn, Peter C., 1974. "Convex stochastic dominance with continuous distribution functions," Journal of Economic Theory, Elsevier, vol. 7(2), pages 143-158, February.
    2. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    3. Bawa, Vijay S, et al, 1985. "On Determination of Stochastic Dominance Optimal Sets," Journal of Finance, American Finance Association, vol. 40(2), pages 417-431, June.
    4. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 735-765.
    5. David B. Brown & Enrico De Giorgi & Melvyn Sim, 2012. "Aspirational Preferences and Their Representation by Risk Measures," Management Science, INFORMS, vol. 58(11), pages 2095-2113, November.
    6. Meyer, Jack, 1977. "Choice among distributions," Journal of Economic Theory, Elsevier, vol. 14(2), pages 326-336, April.
    7. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 73-92.
    8. Kopa, Miloš & Post, Thierry, 2009. "A Portfolio Optimality Test Based on the First-Order Stochastic Dominance Criterion," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(5), pages 1103-1124, October.
    9. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    10. repec:bla:jfinan:v:58:y:2003:i:5:p:1905-1932 is not listed on IDEAS
    11. Meyer, Jack, 1977. "Second Degree Stochastic Dominance with Respect to a Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 477-487, June.
    12. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    13. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 335-346.
    14. James P. Quirk & Rubin Saposnik, 1962. "Admissibility and Measurable Utility Functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 29(2), pages 140-146.
    15. Thierry Post, 2003. "Empirical Tests for Stochastic Dominance Efficiency," Journal of Finance, American Finance Association, vol. 58(5), pages 1905-1931, October.
    16. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    17. Lizyayev, Andrey & Ruszczyński, Andrzej, 2012. "Tractable Almost Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 218(2), pages 448-455.
    18. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    19. Andrey Lizyayev, 2012. "Stochastic dominance efficiency analysis of diversified portfolios: classification, comparison and refinements," Annals of Operations Research, Springer, vol. 196(1), pages 391-410, July.
    20. Timo Kuosmanen, 2004. "Efficient Diversification According to Stochastic Dominance Criteria," Management Science, INFORMS, vol. 50(10), pages 1390-1406, October.
    21. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    22. Josef Hadar & Tae Kun Seo, 1988. "Asset Proportions in Optimal Portfolios," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 55(3), pages 459-468.
    23. Kimball, Miles S, 1993. "Standard Risk Aversion," Econometrica, Econometric Society, vol. 61(3), pages 589-611, May.
    24. Donald Meyer & Jack Meyer, 2005. "Relative Risk Aversion: What Do We Know?," Journal of Risk and Uncertainty, Springer, vol. 31(3), pages 243-262, December.
    25. Pavlo R. Blavatskyy, 2010. "Modifying the Mean-Variance Approach to Avoid Violations of Stochastic Dominance," Management Science, INFORMS, vol. 56(11), pages 2050-2057, November.
    26. Bawa, Vijay S. & Lindenberg, Eric B., 1977. "Capital market equilibrium in a mean-lower partial moment framework," Journal of Financial Economics, Elsevier, vol. 5(2), pages 189-200, November.
    27. Bali, Turan G. & Demirtas, K. Ozgur & Levy, Haim & Wolf, Avner, 2009. "Bonds versus stocks: Investors' age and risk taking," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 817-830, September.
    28. Lozano, Sebastián & Gutiérrez, Ester, 2008. "Data envelopment analysis of mutual funds based on second-order stochastic dominance," European Journal of Operational Research, Elsevier, vol. 189(1), pages 230-244, August.
    29. Moshe Leshno & Haim Levy, 2002. "Preferred by "All" and Preferred by "Most" Decision Makers: Almost Stochastic Dominance," Management Science, INFORMS, vol. 48(8), pages 1074-1085, August.
    30. Levy, H & Markowtiz, H M, 1979. "Approximating Expected Utility by a Function of Mean and Variance," American Economic Review, American Economic Association, vol. 69(3), pages 308-317, June.
    31. Post, Thierry, 2008. "On the dual test for SSD efficiency: With an application to momentum investment strategies," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1564-1573, March.
    32. Haim Shalit & Shlomo Yitzhaki, 1994. "Marginal Conditional Stochastic Dominance," Management Science, INFORMS, vol. 40(5), pages 670-684, May.
    33. Haim Levy & Moshe Leshno & Boaz Leibovitch, 2010. "Economically relevant preferences for all observed epsilon," Annals of Operations Research, Springer, vol. 176(1), pages 153-178, April.
    34. Ray D. Nelson & Rulon D. Pope, 1991. "Bootstrapped Insights into Empirical Applications of Stochastic Dominance," Management Science, INFORMS, vol. 37(9), pages 1182-1194, September.
    35. Jitka Dupačová & Miloš Kopa, 2012. "Robustness in stochastic programs with risk constraints," Annals of Operations Research, Springer, vol. 200(1), pages 55-74, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Yi & Post, Thierry, 2017. "Higher-degree stochastic dominance optimality and efficiency," European Journal of Operational Research, Elsevier, vol. 261(3), pages 984-993.
    2. Kallio, Markku & Dehghan Hardoroudi, Nasim, 2018. "Second-order stochastic dominance constrained portfolio optimization: Theory and computational tests," European Journal of Operational Research, Elsevier, vol. 264(2), pages 675-685.
    3. Thierry Post & Miloš Kopa, 2017. "Portfolio Choice Based on Third-Degree Stochastic Dominance," Management Science, INFORMS, vol. 63(10), pages 3381-3392, October.
    4. Christodoulakis, George & Mohamed, Abdulkadir & Topaloglou, Nikolas, 2018. "Optimal privatization portfolios in the presence of arbitrary risk aversion," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1172-1191.
    5. Thierry Post & Yi Fang & Miloš Kopa, 2015. "Linear Tests for Decreasing Absolute Risk Aversion Stochastic Dominance," Management Science, INFORMS, vol. 61(7), pages 1615-1629, July.
    6. Andrey Lizyayev, 2012. "Stochastic dominance efficiency analysis of diversified portfolios: classification, comparison and refinements," Annals of Operations Research, Springer, vol. 196(1), pages 391-410, July.
    7. Guo, Xu & Post, Thierry & Wong, Wing-Keung & Zhu, Lixing, 2014. "Moment conditions for Almost Stochastic Dominance," Economics Letters, Elsevier, vol. 124(2), pages 163-167.
    8. Jia Liu & Zhiping Chen & Giorgio Consigli, 2021. "Interval-based stochastic dominance: theoretical framework and application to portfolio choices," Annals of Operations Research, Springer, vol. 307(1), pages 329-361, December.
    9. Levy, Haim & Levy, Moshe, 2021. "Stocks versus bonds for the long run when a riskless asset is available," Journal of Banking & Finance, Elsevier, vol. 133(C).
    10. Post, Thierry & Karabatı, Selçuk & Arvanitis, Stelios, 2018. "Portfolio optimization based on stochastic dominance and empirical likelihood," Journal of Econometrics, Elsevier, vol. 206(1), pages 167-186.
    11. Egozcue, Martin & Wong, Wing-Keung, 2010. "Gains from diversification on convex combinations: A majorization and stochastic dominance approach," European Journal of Operational Research, Elsevier, vol. 200(3), pages 893-900, February.
    12. Stelios Arvanitis & Mark Hallam & Thierry Post & Nikolas Topaloglou, 2019. "Stochastic Spanning," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 573-585, October.
    13. Hildebrandt, Patrick & Knoke, Thomas, 2011. "Investment decisions under uncertainty--A methodological review on forest science studies," Forest Policy and Economics, Elsevier, vol. 13(1), pages 1-15, January.
    14. Raymond H. Chan & Ephraim Clark & Xu Guo & Wing-Keung Wong, 2020. "New development on the third-order stochastic dominance for risk-averse and risk-seeking investors with application in risk management," Risk Management, Palgrave Macmillan, vol. 22(2), pages 108-132, June.
    15. Lizyayev, Andrey & Ruszczyński, Andrzej, 2012. "Tractable Almost Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 218(2), pages 448-455.
    16. Xu, Guo & Wing-Keung, Wong & Lixing, Zhu, 2013. "Almost Stochastic Dominance for Risk-Averse and Risk-Seeking Investors," MPRA Paper 51744, University Library of Munich, Germany.
    17. W. Wong & R. Chan, 2008. "Prospect and Markowitz stochastic dominance," Annals of Finance, Springer, vol. 4(1), pages 105-129, January.
    18. Guo, Xu & Wong, Wing-Keung & Zhu, Lixing, 2013. "Make Almost Stochastic Dominance really Almost," MPRA Paper 49745, University Library of Munich, Germany.
    19. Leili Javanmardi & Yuri Lawryshyn, 2016. "A new rank dependent utility approach to model risk averse preferences in portfolio optimization," Annals of Operations Research, Springer, vol. 237(1), pages 161-176, February.
    20. Kolokolova, Olga & Le Courtois, Olivier & Xu, Xia, 2022. "Is the index efficient? A worldwide tour with stochastic dominance," Journal of Financial Markets, Elsevier, vol. 59(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:230:y:2013:i:2:p:321-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.