IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v63y2006i1p169-186.html
   My bibliography  Save this article

Time Consistent Dynamic Risk Measures

Author

Listed:
  • Kang Boda
  • Jerzy Filar

Abstract

We introduce the time-consistency concept that is inspired by the so-called “principle of optimality” of dynamic programming and demonstrate – via an example – that the conditional value-at-risk (CVaR) need not be time-consistent in a multi-stage case. Then, we give the formulation of the target-percentile risk measure which is time-consistent and hence more suitable in the multi-stage investment context. Finally, we also generalize the value-at-risk and CVaR to multi-stage risk measures based on the theory and structure of the target-percentile risk measure. Copyright Springer-Verlag 2006

Suggested Citation

  • Kang Boda & Jerzy Filar, 2006. "Time Consistent Dynamic Risk Measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 169-186, February.
  • Handle: RePEc:spr:mathme:v:63:y:2006:i:1:p:169-186
    DOI: 10.1007/s00186-005-0045-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-005-0045-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-005-0045-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    2. Ronald A. Howard & James E. Matheson, 1972. "Risk-Sensitive Markov Decision Processes," Management Science, INFORMS, vol. 18(7), pages 356-369, March.
    3. Jerzy A. Filar & L. C. M. Kallenberg & Huey-Miin Lee, 1989. "Variance-Penalized Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 14(1), pages 147-161, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Özlem Çavuş & Andrzej Ruszczyński, 2014. "Computational Methods for Risk-Averse Undiscounted Transient Markov Models," Operations Research, INFORMS, vol. 62(2), pages 401-417, April.
    2. Lucy Gongtao Chen & Daniel Zhuoyu Long & Melvyn Sim, 2015. "On Dynamic Decision Making to Meet Consumption Targets," Operations Research, INFORMS, vol. 63(5), pages 1117-1130, October.
    3. Kumar, Uday M & Bhat, Sanjay P. & Kavitha, Veeraruna & Hemachandra, Nandyala, 2023. "Approximate solutions to constrained risk-sensitive Markov decision processes," European Journal of Operational Research, Elsevier, vol. 310(1), pages 249-267.
    4. Karel Sladký, 2013. "Risk-Sensitive and Mean Variance Optimality in Markov Decision Processes," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 7(3), pages 146-161, November.
    5. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    6. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    7. Christina Büsing & Sigrid Knust & Xuan Thanh Le, 2018. "Trade-off between robustness and cost for a storage loading problem: rule-based scenario generation," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 339-365, December.
    8. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.
    9. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    10. Jiang Cheng & Hung-Gay Fung & Tzu-Ting Lin & Min-Ming Wen, 2024. "CEO optimism and the use of credit default swaps: evidence from the US life insurance industry," Review of Quantitative Finance and Accounting, Springer, vol. 63(1), pages 169-194, July.
    11. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2014. "Beyond cash-additive risk measures: when changing the numéraire fails," Finance and Stochastics, Springer, vol. 18(1), pages 145-173, January.
    12. Li, Xiao-Ming & Rose, Lawrence C., 2009. "The tail risk of emerging stock markets," Emerging Markets Review, Elsevier, vol. 10(4), pages 242-256, December.
    13. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    14. Louis Anthony (Tony)Cox, 2008. "What's Wrong with Risk Matrices?," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 497-512, April.
    15. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Hedging of Derivatives Using Reinforcement Learning," Papers 2103.16409, arXiv.org.
    16. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    17. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    18. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    19. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    20. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:63:y:2006:i:1:p:169-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.