IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v83y2022i3d10.1007_s10898-021-01113-z.html
   My bibliography  Save this article

Multi-stage portfolio selection problem with dynamic stochastic dominance constraints

Author

Listed:
  • Yu Mei

    (Xi’an Jiaotong University
    Xi’an International Academy for Mathematics and Mathematical Technology)

  • Zhiping Chen

    (Xi’an Jiaotong University
    Xi’an International Academy for Mathematics and Mathematical Technology)

  • Jia Liu

    (Xi’an Jiaotong University
    Xi’an International Academy for Mathematics and Mathematical Technology)

  • Bingbing Ji

    (Xi’an Jiaotong University
    Xi’an International Academy for Mathematics and Mathematical Technology)

Abstract

We study the multi-stage portfolio selection problem where the utility function of an investor is ambiguous. The ambiguity is characterized by dynamic stochastic dominance constraints, which are able to capture the dynamics of the random return sequence during the investment process. We propose a multi-stage dynamic stochastic dominance constrained portfolio selection model, and use a mixed normal distribution with time-varying weights and the K-means clustering technique to generate a scenario tree for the transformation of the proposed model. Based on the scenario tree representation, we derive two linear programming approximation problems, using the sampling approach or the duality theory, which provide an upper bound approximation and a lower bound approximation for the original nonconvex problem. The upper bound is asymptotically tight with infinitely many samples. Numerical results illustrate the practicality and efficiency of the proposed new model and solution techniques.

Suggested Citation

  • Yu Mei & Zhiping Chen & Jia Liu & Bingbing Ji, 2022. "Multi-stage portfolio selection problem with dynamic stochastic dominance constraints," Journal of Global Optimization, Springer, vol. 83(3), pages 585-613, July.
  • Handle: RePEc:spr:jglopt:v:83:y:2022:i:3:d:10.1007_s10898-021-01113-z
    DOI: 10.1007/s10898-021-01113-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01113-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01113-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nilay Noyan & Gábor Rudolf, 2013. "Optimization with Multivariate Conditional Value-at-Risk Constraints," Operations Research, INFORMS, vol. 61(4), pages 990-1013, August.
    2. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Conditional Risk Mappings," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 544-561, August.
    3. Escudero, Laureano F. & Garín, María Araceli & Merino, María & Pérez, Gloria, 2016. "On time stochastic dominance induced by mixed integer-linear recourse in multistage stochastic programs," European Journal of Operational Research, Elsevier, vol. 249(1), pages 164-176.
    4. Zhiping Chen & Giorgio Consigli & Jia Liu & Gang Li & Tianwen Fu & Qianhui Hu, 2017. "Multi-Period Risk Measures and Optimal Investment Policies," International Series in Operations Research & Management Science, in: Giorgio Consigli & Daniel Kuhn & Paolo Brandimarte (ed.), Optimal Financial Decision Making under Uncertainty, chapter 0, pages 1-34, Springer.
    5. Xi Yang & Jacek Gondzio & Andreas Grothey, 2010. "Asset liability management modelling with risk control by stochastic dominance," Journal of Asset Management, Palgrave Macmillan, vol. 11(2), pages 73-93, June.
    6. James Ming Chen, 2017. "Risk and Uncertainty," Quantitative Perspectives on Behavioral Economics and Finance, in: Econophysics and Capital Asset Pricing, chapter 0, pages 189-211, Palgrave Macmillan.
    7. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2008. "A dynamic stochastic programming model for international portfolio management," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1501-1524, March.
    8. Michal Kaut & Stein Wallace, 2011. "Shape-based scenario generation using copulas," Computational Management Science, Springer, vol. 8(1), pages 181-199, April.
    9. Benjamin Armbruster & James Luedtke, 2015. "Models and formulations for multivariate dominance-constrained stochastic programs," IISE Transactions, Taylor & Francis Journals, vol. 47(1), pages 1-14, January.
    10. Dupačová, Jitka & Kopa, Miloš, 2014. "Robustness of optimal portfolios under risk and stochastic dominance constraints," European Journal of Operational Research, Elsevier, vol. 234(2), pages 434-441.
    11. Meskarian, Rudabeh & Xu, Huifu & Fliege, Jörg, 2012. "Numerical methods for stochastic programs with second order dominance constraints with applications to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 216(2), pages 376-385.
    12. Andrea Consiglio & Angelo Carollo & Stavros A. Zenios, 2016. "A parsimonious model for generating arbitrage-free scenario trees," Quantitative Finance, Taylor & Francis Journals, vol. 16(2), pages 201-212, February.
    13. Giorgio Consigli & Vittorio Moriggia & Sebastiano Vitali, 2020. "Long-term individual financial planning under stochastic dominance constraints," Annals of Operations Research, Springer, vol. 292(2), pages 973-1000, September.
    14. Moriggia, Vittorio & Kopa, Miloš & Vitali, Sebastiano, 2019. "Pension fund management with hedging derivatives, stochastic dominance and nodal contamination," Omega, Elsevier, vol. 87(C), pages 127-141.
    15. Dentcheva, Darinka & Ruszczynski, Andrzej, 2006. "Portfolio optimization with stochastic dominance constraints," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 433-451, February.
    16. Miloš Kopa & Vittorio Moriggia & Sebastiano Vitali, 2018. "Individual optimal pension allocation under stochastic dominance constraints," Annals of Operations Research, Springer, vol. 260(1), pages 255-291, January.
    17. Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
    18. Michael A.H. Dempster & Elena A. Medova & Yee Sook Yong, 2011. "Comparison of Sampling Methods for Dynamic Stochastic Programming," International Series in Operations Research & Management Science, in: Marida Bertocchi & Giorgio Consigli & Michael A. H. Dempster (ed.), Stochastic Optimization Methods in Finance and Energy, edition 1, chapter 0, pages 389-425, Springer.
    19. Gulpinar, Nalan & Rustem, Berc, 2007. "Worst-case robust decisions for multi-period mean-variance portfolio optimization," European Journal of Operational Research, Elsevier, vol. 183(3), pages 981-1000, December.
    20. Georg Pflug & Alois Pichler, 2015. "Dynamic generation of scenario trees," Computational Optimization and Applications, Springer, vol. 62(3), pages 641-668, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Liu & Zhiping Chen & Giorgio Consigli, 2021. "Interval-based stochastic dominance: theoretical framework and application to portfolio choices," Annals of Operations Research, Springer, vol. 307(1), pages 329-361, December.
    2. Giorgio Consigli & Vittorio Moriggia & Sebastiano Vitali, 2020. "Long-term individual financial planning under stochastic dominance constraints," Annals of Operations Research, Springer, vol. 292(2), pages 973-1000, September.
    3. Sebastiano Vitali & Vittorio Moriggia, 2021. "Pension fund management with investment certificates and stochastic dominance," Annals of Operations Research, Springer, vol. 299(1), pages 273-292, April.
    4. Maram Alwohaibi & Diana Roman, 2018. "ALM models based on second order stochastic dominance," Computational Management Science, Springer, vol. 15(2), pages 187-211, June.
    5. Zhe Yan & Zhiping Chen & Giorgio Consigli & Jia Liu & Ming Jin, 2020. "A copula-based scenario tree generation algorithm for multiperiod portfolio selection problems," Annals of Operations Research, Springer, vol. 292(2), pages 849-881, September.
    6. Xu, Peng, 2024. "Testing out-of-sample portfolio performance using second-order stochastic dominance constrained optimization approach," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    7. Darinka Dentcheva & Gabriela Martinez & Eli Wolfhagen, 2016. "Augmented Lagrangian Methods for Solving Optimization Problems with Stochastic-Order Constraints," Operations Research, INFORMS, vol. 64(6), pages 1451-1465, December.
    8. Domínguez, Ruth & Carrión, Miguel & Vitali, Sebastiano, 2024. "Investments in transmission lines and storage units considering second-order stochastic dominance constraints," Energy Economics, Elsevier, vol. 134(C).
    9. František Zapletal & Martin Šmíd & Miloš Kopa, 2020. "Multi-stage emissions management of a steel company," Annals of Operations Research, Springer, vol. 292(2), pages 735-751, September.
    10. Branda, Martin, 2015. "Diversification-consistent data envelopment analysis based on directional-distance measures," Omega, Elsevier, vol. 52(C), pages 65-76.
    11. Miloš Kopa & Tomáš Rusý, 2021. "A decision-dependent randomness stochastic program for asset–liability management model with a pricing decision," Annals of Operations Research, Springer, vol. 299(1), pages 241-271, April.
    12. Miloš Kopa & Vittorio Moriggia & Sebastiano Vitali, 2018. "Individual optimal pension allocation under stochastic dominance constraints," Annals of Operations Research, Springer, vol. 260(1), pages 255-291, January.
    13. Moriggia, Vittorio & Kopa, Miloš & Vitali, Sebastiano, 2019. "Pension fund management with hedging derivatives, stochastic dominance and nodal contamination," Omega, Elsevier, vol. 87(C), pages 127-141.
    14. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    15. Xiaoyue Li & A. Sinem Uysal & John M. Mulvey, 2021. "Multi-Period Portfolio Optimization using Model Predictive Control with Mean-Variance and Risk Parity Frameworks," Papers 2103.10813, arXiv.org.
    16. Fonseca, Raquel J. & Rustem, Berç, 2012. "International portfolio management with affine policies," European Journal of Operational Research, Elsevier, vol. 223(1), pages 177-187.
    17. Kopa, Miloš & Rusý, Tomáš, 2023. "Robustness of stochastic programs with endogenous randomness via contamination," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1259-1272.
    18. Mehmet Pinar & Thanasis Stengos & Nikolas Topaloglou, 2022. "Stochastic dominance spanning and augmenting the human development index with institutional quality," Annals of Operations Research, Springer, vol. 315(1), pages 341-369, August.
    19. Zhang, Ning & Su, Xiaoman & Qi, Shuyuan, 2023. "An empirical investigation of multiperiod tail risk forecasting models," International Review of Financial Analysis, Elsevier, vol. 86(C).
    20. Wong, Man Hong, 2013. "Investment models based on clustered scenario trees," European Journal of Operational Research, Elsevier, vol. 227(2), pages 314-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:83:y:2022:i:3:d:10.1007_s10898-021-01113-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.