IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v234y2014i2p434-441.html
   My bibliography  Save this article

Robustness of optimal portfolios under risk and stochastic dominance constraints

Author

Listed:
  • Dupačová, Jitka
  • Kopa, Miloš

Abstract

Solutions of portfolio optimization problems are often influenced by a model misspecification or by errors due to approximation, estimation and incomplete information. The obtained results, recommendations for the risk and portfolio manager, should be then carefully analyzed. We shall deal with output analysis and stress testing with respect to uncertainty or perturbations of input data for static risk constrained portfolio optimization problems by means of the contamination technique. Dependence of the set of feasible solutions on the probability distribution rules out the straightforward construction of convexity-based global contamination bounds. Results obtained in our paper [Dupačová, J., & Kopa, M. (2012). Robustness in stochastic programs with risk constraints. Annals of Operations Research, 200, 55–74.] were derived for the risk and second order stochastic dominance constraints under suitable smoothness and/or convexity assumptions that are fulfilled, e.g. for the Markowitz mean–variance model. In this paper we relax these assumptions having in mind the first order stochastic dominance and probabilistic risk constraints. Local bounds for problems of a special structure are obtained. Under suitable conditions on the structure of the problem and for discrete distributions we shall exploit the contamination technique to derive a new robust first order stochastic dominance portfolio efficiency test.

Suggested Citation

  • Dupačová, Jitka & Kopa, Miloš, 2014. "Robustness of optimal portfolios under risk and stochastic dominance constraints," European Journal of Operational Research, Elsevier, vol. 234(2), pages 434-441.
  • Handle: RePEc:eee:ejores:v:234:y:2014:i:2:p:434-441
    DOI: 10.1016/j.ejor.2013.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713005067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Darinka Dentcheva & Andrzej Ruszczynski, 2004. "Optimization Under First Order Stochastic Dominance Constraints," GE, Growth, Math methods 0403002, University Library of Munich, Germany, revised 07 Aug 2005.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    4. Kopa, Miloš & Post, Thierry, 2009. "A Portfolio Optimality Test Based on the First-Order Stochastic Dominance Criterion," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(5), pages 1103-1124, October.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    7. Stoyan Stoyanov & Svetlozar Rachev & Frank Fabozzi, 2013. "Sensitivity of portfolio VaR and CVaR to portfolio return characteristics," Annals of Operations Research, Springer, vol. 205(1), pages 169-187, May.
    8. Georg Pflug & David Wozabal, 2007. "Ambiguity in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 435-442.
    9. Levy, Moshe, 2009. "Almost Stochastic Dominance and stocks for the long run," European Journal of Operational Research, Elsevier, vol. 194(1), pages 250-257, April.
    10. Jitka Dupacova & Jan PolIvka, 2007. "Stress testing for VaR and CVaR," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 411-421.
    11. Lizyayev, Andrey & Ruszczyński, Andrzej, 2012. "Tractable Almost Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 218(2), pages 448-455.
    12. Lester G. Telser, 1955. "Safety First and Hedging," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 23(1), pages 1-16.
    13. Timo Kuosmanen, 2004. "Efficient Diversification According to Stochastic Dominance Criteria," Management Science, INFORMS, vol. 50(10), pages 1390-1406, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lizyayev, Andrey & Ruszczyński, Andrzej, 2012. "Tractable Almost Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 218(2), pages 448-455.
    2. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    3. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    4. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.
    5. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    6. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    7. Juan F. Monge & Mercedes Landete & Jos'e L. Ruiz, 2016. "Sharpe portfolio using a cross-efficiency evaluation," Papers 1610.00937, arXiv.org, revised Oct 2016.
    8. Steve Zymler & Daniel Kuhn & Berç Rustem, 2013. "Worst-Case Value at Risk of Nonlinear Portfolios," Management Science, INFORMS, vol. 59(1), pages 172-188, July.
    9. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    10. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.
    11. Ashrafi, Hedieh & Thiele, Aurélie C., 2021. "A study of robust portfolio optimization with European options using polyhedral uncertainty sets," Operations Research Perspectives, Elsevier, vol. 8(C).
    12. Bazovkin, Pavel, 2014. "Geometrical framework for robust portfolio optimization," Discussion Papers in Econometrics and Statistics 01/14, University of Cologne, Institute of Econometrics and Statistics.
    13. Michel Denuit & Rachel Huang & Larry Tzeng, 2014. "Bivariate almost stochastic dominance," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(2), pages 377-405, October.
    14. Sehgal, Ruchika & Sharma, Amita & Mansini, Renata, 2023. "Worst-case analysis of Omega-VaR ratio optimization model," Omega, Elsevier, vol. 114(C).
    15. Hosseini-Nodeh, Zohreh & Khanjani-Shiraz, Rashed & Pardalos, Panos M., 2023. "Portfolio optimization using robust mean absolute deviation model: Wasserstein metric approach," Finance Research Letters, Elsevier, vol. 54(C).
    16. Kim, Jang Ho & Kim, Woo Chang & Fabozzi, Frank J., 2013. "Composition of robust equity portfolios," Finance Research Letters, Elsevier, vol. 10(2), pages 72-81.
    17. Robert Durand & John Gould & Ross Maller, 2011. "On the performance of the minimum VaR portfolio," The European Journal of Finance, Taylor & Francis Journals, vol. 17(7), pages 553-576.
    18. Somayyeh Lotfi & Stavros A. Zenios, 2024. "Robust mean-to-CVaR optimization under ambiguity in distributions means and covariance," Review of Managerial Science, Springer, vol. 18(7), pages 2115-2140, July.
    19. David Wozabal, 2014. "Robustifying Convex Risk Measures for Linear Portfolios: A Nonparametric Approach," Operations Research, INFORMS, vol. 62(6), pages 1302-1315, December.
    20. Levy, Haim & Levy, Moshe, 2021. "Stocks versus bonds for the long run when a riskless asset is available," Journal of Banking & Finance, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:234:y:2014:i:2:p:434-441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.