IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v181y2007i3p1630-1652.html
   My bibliography  Save this article

On finding multiple Pareto-optimal solutions using classical and evolutionary generating methods

Author

Listed:
  • Shukla, Pradyumn Kumar
  • Deb, Kalyanmoy

Abstract

No abstract is available for this item.

Suggested Citation

  • Shukla, Pradyumn Kumar & Deb, Kalyanmoy, 2007. "On finding multiple Pareto-optimal solutions using classical and evolutionary generating methods," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1630-1652, September.
  • Handle: RePEc:eee:ejores:v:181:y:2007:i:3:p:1630-1652
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)00543-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Schäffler & R. Schultz & K. Weinzierl, 2002. "Stochastic Method for the Solution of Unconstrained Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 114(1), pages 209-222, July.
    2. Pekka Korhonen & Seppo Salo & Ralph E. Steuer, 1997. "A Heuristic for Estimating Nadir Criterion Values in Multiple Objective Linear Programming," Operations Research, INFORMS, vol. 45(5), pages 751-757, October.
    3. C. Hillermeier, 2001. "Generalized Homotopy Approach to Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 557-583, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bekker, James & Aldrich, Chris, 2011. "The cross-entropy method in multi-objective optimisation: An assessment," European Journal of Operational Research, Elsevier, vol. 211(1), pages 112-121, May.
    2. Bacci, Livio Agnew & Mello, Luiz Gustavo & Incerti, Taynara & Paulo de Paiva, Anderson & Balestrassi, Pedro Paulo, 2019. "Optimization of combined time series methods to forecast the demand for coffee in Brazil: A new approach using Normal Boundary Intersection coupled with mixture designs of experiments and rotated fact," International Journal of Production Economics, Elsevier, vol. 212(C), pages 186-211.
    3. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    4. Mohamed Abouhawwash & Kalyanmoy Deb, 2021. "Reference point based evolutionary multi-objective optimization algorithms with convergence properties using KKTPM and ASF metrics," Journal of Heuristics, Springer, vol. 27(4), pages 575-614, August.
    5. Salkuti, Surender Reddy, 2019. "Day-ahead thermal and renewable power generation scheduling considering uncertainty," Renewable Energy, Elsevier, vol. 131(C), pages 956-965.
    6. Wang, Honggang, 2017. "Multi-objective retrospective optimization using stochastic zigzag search," European Journal of Operational Research, Elsevier, vol. 263(3), pages 946-960.
    7. Wang, Long & Wang, Tongguang & Wu, Jianghai & Chen, Guoping, 2017. "Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design," Energy, Elsevier, vol. 120(C), pages 346-361.
    8. Ameknassi, Lhoussaine & Aït-Kadi, Daoud & Rezg, Nidhal, 2016. "Integration of logistics outsourcing decisions in a green supply chain design: A stochastic multi-objective multi-period multi-product programming model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 165-184.
    9. Florios, Kostas & Mavrotas, George & Diakoulaki, Danae, 2010. "Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 203(1), pages 14-21, May.
    10. Massimiliano Kaucic & Roberto Daris, 2015. "Multi-Objective Stochastic Optimization Programs for a Non-Life Insurance Company under Solvency Constraints," Risks, MDPI, vol. 3(3), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.P. Wierzbicki, 1998. "Reference Point Methods in Vector Optimization and Decision Support," Working Papers ir98017, International Institute for Applied Systems Analysis.
    2. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    3. Alves, Maria João & Costa, João Paulo, 2009. "An exact method for computing the nadir values in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 198(2), pages 637-646, October.
    4. O. Schütze & C. Hernández & E-G. Talbi & J. Q. Sun & Y. Naranjani & F.-R. Xiong, 2019. "Archivers for the representation of the set of approximate solutions for MOPs," Journal of Heuristics, Springer, vol. 25(1), pages 71-105, February.
    5. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    6. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    7. Fereshteh Akbari & Mehrdad Ghaznavi & Esmaile Khorram, 2018. "A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 560-590, August.
    8. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    9. Carlos Ignacio Hernández Castellanos & Oliver Schütze & Jian-Qiao Sun & Guillermo Morales-Luna & Sina Ober-Blöbaum, 2020. "Numerical Computation of Lightly Multi-Objective Robust Optimal Solutions by Means of Generalized Cell Mapping," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    10. Luque, M. & Marcenaro-Gutiérrez, O.D. & López-Agudo, L.A., 2015. "On the potential balance among compulsory education outcomes through econometric and multiobjective programming analysis," European Journal of Operational Research, Elsevier, vol. 241(2), pages 527-540.
    11. Kaliszewski, Ignacy, 2003. "Dynamic parametric bounds on efficient outcomes in interactive multiple criteria decision making problems," European Journal of Operational Research, Elsevier, vol. 147(1), pages 94-107, May.
    12. Clempner, Julio B. & Poznyak, Alexander S., 2016. "Solving the Pareto front for multiobjective Markov chains using the minimum Euclidean distance gradient-based optimization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 142-160.
    13. Stefan Banholzer & Giulia Fabrini & Lars Grüne & Stefan Volkwein, 2020. "Multiobjective Model Predictive Control of a Parabolic Advection-Diffusion-Reaction Equation," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    14. Jeffrey Schavland & Yupo Chan & Richard A. Raines, 2009. "Information security: Designing a stochastic‐network for throughput and reliability," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(7), pages 625-641, October.
    15. Bennet Gebken & Sebastian Peitz, 2021. "An Efficient Descent Method for Locally Lipschitz Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 696-723, March.
    16. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    17. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    18. Ehrgott, Matthias & Tenfelde-Podehl, Dagmar, 2003. "Computation of ideal and Nadir values and implications for their use in MCDM methods," European Journal of Operational Research, Elsevier, vol. 151(1), pages 119-139, November.
    19. Metev, Boyan & Gueorguieva, Dessislava, 2000. "A simple method for obtaining weakly efficient points in multiobjective linear fractional programming problems," European Journal of Operational Research, Elsevier, vol. 126(2), pages 386-390, October.
    20. Murat Köksalan & Banu Lokman, 2015. "Finding nadir points in multi-objective integer programs," Journal of Global Optimization, Springer, vol. 62(1), pages 55-77, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:181:y:2007:i:3:p:1630-1652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.