IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v63y2016i2p305-332.html
   My bibliography  Save this article

The directed search method for multi-objective memetic algorithms

Author

Listed:
  • Oliver Schütze
  • Adanay Martín
  • Adriana Lara
  • Sergio Alvarado
  • Eduardo Salinas
  • Carlos Coello

Abstract

We propose a new iterative search procedure for the numerical treatment of unconstrained multi-objective optimization problems (MOPs) which steers the search along a predefined direction given in objective space. Based on this idea we will present two methods: directed search (DS) descent which seeks for improvements of the given model, and a novel continuation method (DS continuation) which allows to search along the Pareto set of a given MOP. One advantage of both methods is that they can be realized with and without gradient information, and if neighborhood information is available the computation of the search direction comes even for free. The latter makes our algorithms interesting candidates for local search engines within memetic strategies. Further, the approach can be used to gain some interesting insights into the nature of multi-objective stochastic local search which may explain one facet of the success of multi-objective evolutionary algorithms (MOEAs). Finally, we demonstrate the strength of the method both as standalone algorithm and as local search engine within a MOEA. Copyright Springer Science+Business Media New York 2016

Suggested Citation

  • Oliver Schütze & Adanay Martín & Adriana Lara & Sergio Alvarado & Eduardo Salinas & Carlos Coello, 2016. "The directed search method for multi-objective memetic algorithms," Computational Optimization and Applications, Springer, vol. 63(2), pages 305-332, March.
  • Handle: RePEc:spr:coopap:v:63:y:2016:i:2:p:305-332
    DOI: 10.1007/s10589-015-9774-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-015-9774-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-015-9774-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Schäffler & R. Schultz & K. Weinzierl, 2002. "Stochastic Method for the Solution of Unconstrained Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 114(1), pages 209-222, July.
    2. Beume, Nicola & Naujoks, Boris & Emmerich, Michael, 2007. "SMS-EMOA: Multiobjective selection based on dominated hypervolume," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1653-1669, September.
    3. Federico Zuiani & Massimiliano Vasile, 2013. "Multi Agent Collaborative Search based on Tchebycheff decomposition," Computational Optimization and Applications, Springer, vol. 56(1), pages 189-208, September.
    4. Honggang Wang, 2013. "Zigzag Search for Continuous Multiobjective Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 654-665, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Alvarado-Iniesta & Luis Gonzalo Guillen-Anaya & Luis Alberto Rodríguez-Picón & Raul Ñeco-Caberta, 2020. "Multi-objective optimization of an engine mount design by means of memetic genetic programming and a local exploration approach," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 19-32, January.
    2. Johan M. Bogoya & Andrés Vargas & Oliver Schütze, 2019. "The Averaged Hausdorff Distances in Multi-Objective Optimization: A Review," Mathematics, MDPI, vol. 7(10), pages 1-35, September.
    3. Wang, Honggang, 2017. "Multi-objective retrospective optimization using stochastic zigzag search," European Journal of Operational Research, Elsevier, vol. 263(3), pages 946-960.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liagkouras, Konstantinos & Metaxiotis, Konstantinos, 2021. "Improving multi-objective algorithms performance by emulating behaviors from the human social analogue in candidate solutions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1019-1036.
    2. Gong, Wenyin & Cai, Zhihua, 2009. "An improved multiobjective differential evolution based on Pareto-adaptive [epsilon]-dominance and orthogonal design," European Journal of Operational Research, Elsevier, vol. 198(2), pages 576-601, October.
    3. Andrea Ponti & Antonio Candelieri & Ilaria Giordani & Francesco Archetti, 2023. "Intrusion Detection in Networks by Wasserstein Enabled Many-Objective Evolutionary Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-14, May.
    4. David Quintana & Roman Denysiuk & Sandra García-Rodríguez & Antonio Gaspar-Cunha, 2017. "Portfolio implementation risk management using evolutionary multiobjective optimization," Post-Print hal-01881379, HAL.
    5. Gupta, Vishal Kumar & Ting, Q.U. & Tiwari, Manoj Kumar, 2019. "Multi-period price optimization problem for omnichannel retailers accounting for customer heterogeneity," International Journal of Production Economics, Elsevier, vol. 212(C), pages 155-167.
    6. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    7. Yeudiel Lara Moreno & Carlos Ignacio Hernández Castellanos, 2024. "A Hierarchical Approach to a Tri-Objective Portfolio Optimization Problem Considering an ESG Index," Mathematics, MDPI, vol. 12(19), pages 1-16, October.
    8. Laumanns, Marco & Zenklusen, Rico, 2011. "Stochastic convergence of random search methods to fixed size Pareto front approximations," European Journal of Operational Research, Elsevier, vol. 213(2), pages 414-421, September.
    9. Ivo Couckuyt & Dirk Deschrijver & Tom Dhaene, 2014. "Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization," Journal of Global Optimization, Springer, vol. 60(3), pages 575-594, November.
    10. O. Schütze & C. Hernández & E-G. Talbi & J. Q. Sun & Y. Naranjani & F.-R. Xiong, 2019. "Archivers for the representation of the set of approximate solutions for MOPs," Journal of Heuristics, Springer, vol. 25(1), pages 71-105, February.
    11. Derbel, Bilel & Humeau, Jérémie & Liefooghe, Arnaud & Verel, Sébastien, 2014. "Distributed localized bi-objective search," European Journal of Operational Research, Elsevier, vol. 239(3), pages 731-743.
    12. Hang Xu, 2024. "A Dynamic Tasking-Based Evolutionary Algorithm for Bi-Objective Feature Selection," Mathematics, MDPI, vol. 12(10), pages 1-23, May.
    13. Sergio Cabello, 2023. "Faster distance-based representative skyline and k-center along pareto front in the plane," Journal of Global Optimization, Springer, vol. 86(2), pages 441-466, June.
    14. Sven Schulz & Udo Buscher & Liji Shen, 2020. "Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices," Journal of Business Economics, Springer, vol. 90(9), pages 1315-1343, November.
    15. Lourdes Uribe & Johan M Bogoya & Andrés Vargas & Adriana Lara & Günter Rudolph & Oliver Schütze, 2020. "A Set Based Newton Method for the Averaged Hausdorff Distance for Multi-Objective Reference Set Problems," Mathematics, MDPI, vol. 8(10), pages 1-29, October.
    16. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    17. Yugong Dang & Hongen Ma & Jun Wang & Zhigang Zhou & Zhidong Xu, 2022. "An Improved Multi-Objective Optimization Decision Method Using NSGA-III for a Bivariate Precision Fertilizer Applicator," Agriculture, MDPI, vol. 12(9), pages 1-23, September.
    18. Álvaro Rubio-Largo & Miguel Vega-Rodríguez & David González-Álvarez, 2015. "Multiobjective swarm intelligence for the traffic grooming problem," Computational Optimization and Applications, Springer, vol. 60(2), pages 479-511, March.
    19. Taimoor Akhtar & Christine Shoemaker, 2016. "Multi objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection," Journal of Global Optimization, Springer, vol. 64(1), pages 17-32, January.
    20. Prashant Singh & Ivo Couckuyt & Khairy Elsayed & Dirk Deschrijver & Tom Dhaene, 2017. "Multi-objective Geometry Optimization of a Gas Cyclone Using Triple-Fidelity Co-Kriging Surrogate Models," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 172-193, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:63:y:2016:i:2:p:305-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.