IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v25y2019i1d10.1007_s10732-018-9383-z.html
   My bibliography  Save this article

Archivers for the representation of the set of approximate solutions for MOPs

Author

Listed:
  • O. Schütze

    (Cinvestav-IPN)

  • C. Hernández

    (Cinvestav-IPN)

  • E-G. Talbi

    (University of Lille 1)

  • J. Q. Sun

    (University of California)

  • Y. Naranjani

    (University of California)

  • F.-R. Xiong

    (Tianjin University)

Abstract

In this paper we address the problem of computing suitable representations of the set of approximate solutions of a given multi-objective optimization problem via stochastic search algorithms. For this, we will propose different archiving strategies for the selection of the candidate solutions maintained by the generation process of the stochastic search process, and investigate them further on analytically and empirically. For all archivers we will provide upper bounds on the approximation quality as well as on the cardinality of the limit solution set. We conclude this work by a comparative study on some test problems in order to visualize the effect of all novel archiving strategies.

Suggested Citation

  • O. Schütze & C. Hernández & E-G. Talbi & J. Q. Sun & Y. Naranjani & F.-R. Xiong, 2019. "Archivers for the representation of the set of approximate solutions for MOPs," Journal of Heuristics, Springer, vol. 25(1), pages 71-105, February.
  • Handle: RePEc:spr:joheur:v:25:y:2019:i:1:d:10.1007_s10732-018-9383-z
    DOI: 10.1007/s10732-018-9383-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-018-9383-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-018-9383-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Schäffler & R. Schultz & K. Weinzierl, 2002. "Stochastic Method for the Solution of Unconstrained Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 114(1), pages 209-222, July.
    2. Hanne, Thomas, 1999. "On the convergence of multiobjective evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 117(3), pages 553-564, September.
    3. Engau, Alexander & Wiecek, Margaret M., 2007. "Generating [epsilon]-efficient solutions in multiobjective programming," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1566-1579, March.
    4. Laumanns, Marco & Zenklusen, Rico, 2011. "Stochastic convergence of random search methods to fixed size Pareto front approximations," European Journal of Operational Research, Elsevier, vol. 213(2), pages 414-421, September.
    5. White, D.J., 1998. "Epsilon-dominating solutions in mean-variance portfolio analysis," European Journal of Operational Research, Elsevier, vol. 105(3), pages 457-466, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Pajares & Xavier Blasco & Juan Manuel Herrero & Miguel A. Martínez, 2021. "A Comparison of Archiving Strategies for Characterization of Nearly Optimal Solutions under Multi-Objective Optimization," Mathematics, MDPI, vol. 9(9), pages 1-28, April.
    2. Carlos Ignacio Hernández Castellanos & Oliver Schütze & Jian-Qiao Sun & Guillermo Morales-Luna & Sina Ober-Blöbaum, 2020. "Numerical Computation of Lightly Multi-Objective Robust Optimal Solutions by Means of Generalized Cell Mapping," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    3. Nicolas Dupin & Frank Nielsen & El-Ghazali Talbi, 2021. "Unified Polynomial Dynamic Programming Algorithms for P-Center Variants in a 2D Pareto Front," Mathematics, MDPI, vol. 9(4), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fereshteh Akbari & Mehrdad Ghaznavi & Esmaile Khorram, 2018. "A Revised Pascoletti–Serafini Scalarization Method for Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 560-590, August.
    2. Rastegar, Narges & Khorram, Esmaile, 2014. "A combined scalarizing method for multiobjective programming problems," European Journal of Operational Research, Elsevier, vol. 236(1), pages 229-237.
    3. Ellen H. Fukuda & L. M. Graña Drummond & Fernanda M. P. Raupp, 2016. "An external penalty-type method for multicriteria," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 493-513, July.
    4. Maiyar, Lohithaksha M & Thakkar, Jitesh J, 2019. "Environmentally conscious logistics planning for food grain industry considering wastages employing multi objective hybrid particle swarm optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 220-248.
    5. Yeudiel Lara Moreno & Carlos Ignacio Hernández Castellanos, 2024. "A Hierarchical Approach to a Tri-Objective Portfolio Optimization Problem Considering an ESG Index," Mathematics, MDPI, vol. 12(19), pages 1-16, October.
    6. Laumanns, Marco & Zenklusen, Rico, 2011. "Stochastic convergence of random search methods to fixed size Pareto front approximations," European Journal of Operational Research, Elsevier, vol. 213(2), pages 414-421, September.
    7. Hanne, Thomas & Nickel, Stefan, 2005. "A multiobjective evolutionary algorithm for scheduling and inspection planning in software development projects," European Journal of Operational Research, Elsevier, vol. 167(3), pages 663-678, December.
    8. Hanne, Thomas, 2007. "A multiobjective evolutionary algorithm for approximating the efficient set," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1723-1734, February.
    9. Engau, Alexander, 2009. "Tradeoff-based decomposition and decision-making in multiobjective programming," European Journal of Operational Research, Elsevier, vol. 199(3), pages 883-891, December.
    10. A. Engau & M. M. Wiecek, 2007. "Cone Characterizations of Approximate Solutions in Real Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 499-513, September.
    11. Oliver Schütze & Adanay Martín & Adriana Lara & Sergio Alvarado & Eduardo Salinas & Carlos Coello, 2016. "The directed search method for multi-objective memetic algorithms," Computational Optimization and Applications, Springer, vol. 63(2), pages 305-332, March.
    12. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2013. "On the equivalence of quadratic optimization problems commonly used in portfolio theory," European Journal of Operational Research, Elsevier, vol. 229(3), pages 637-644.
    13. Dubois-Lacoste, Jérémie & López-Ibáñez, Manuel & Stützle, Thomas, 2015. "Anytime Pareto local search," European Journal of Operational Research, Elsevier, vol. 243(2), pages 369-385.
    14. C. Gutiérrez & B. Jiménez & V. Novo, 2006. "On Approximate Efficiency in Multiobjective Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 165-185, August.
    15. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    16. Carlos Ignacio Hernández Castellanos & Oliver Schütze & Jian-Qiao Sun & Guillermo Morales-Luna & Sina Ober-Blöbaum, 2020. "Numerical Computation of Lightly Multi-Objective Robust Optimal Solutions by Means of Generalized Cell Mapping," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    17. Engau, Alexander & Wiecek, Margaret M., 2007. "Generating [epsilon]-efficient solutions in multiobjective programming," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1566-1579, March.
    18. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    19. Ellen Fukuda & L. Graña Drummond, 2013. "Inexact projected gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 473-493, April.
    20. Clempner, Julio B. & Poznyak, Alexander S., 2016. "Solving the Pareto front for multiobjective Markov chains using the minimum Euclidean distance gradient-based optimization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 142-160.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:25:y:2019:i:1:d:10.1007_s10732-018-9383-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.