IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v151y2003i1p103-118.html
   My bibliography  Save this article

The interactive analysis of the multicriteria shortest path problem by the reference point method

Author

Listed:
  • Granat, Janusz
  • Guerriero, Francesca

Abstract

No abstract is available for this item.

Suggested Citation

  • Granat, Janusz & Guerriero, Francesca, 2003. "The interactive analysis of the multicriteria shortest path problem by the reference point method," European Journal of Operational Research, Elsevier, vol. 151(1), pages 103-118, November.
  • Handle: RePEc:eee:ejores:v:151:y:2003:i:1:p:103-118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00594-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carraway, Robert L. & Morin, Thomas L. & Moskowitz, Herbert, 1990. "Generalized dynamic programming for multicriteria optimization," European Journal of Operational Research, Elsevier, vol. 44(1), pages 95-104, January.
    2. John R. Current & Charles S. Revelle & Jared L. Cohon, 1987. "The Median Shortest Path Problem: A Multiobjective Approach to Analyze Cost vs. Accessibility in the Design of Transportation Networks," Transportation Science, INFORMS, vol. 21(3), pages 188-197, August.
    3. Current, John & Marsh, Michael, 1993. "Multiobjective transportation network design and routing problems: Taxonomy and annotation," European Journal of Operational Research, Elsevier, vol. 65(1), pages 4-19, February.
    4. D. Klingman & A. Napier & J. Stutz, 1974. "NETGEN: A Program for Generating Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems," Management Science, INFORMS, vol. 20(5), pages 814-821, January.
    5. Granat, Janusz & Makowski, Marek, 2000. "Interactive specification and analysis of aspiration-based preferences," European Journal of Operational Research, Elsevier, vol. 122(2), pages 469-485, April.
    6. Namorado Climaco, Joao Carlos & Queiros Vieira Martins, Ernesto, 1982. "A bicriterion shortest path algorithm," European Journal of Operational Research, Elsevier, vol. 11(4), pages 399-404, December.
    7. Pekka Korhonen & Seppo Salo & Ralph E. Steuer, 1997. "A Heuristic for Estimating Nadir Criterion Values in Multiple Objective Linear Programming," Operations Research, INFORMS, vol. 45(5), pages 751-757, October.
    8. Current, John & Min, HoKey, 1986. "Multiobjective design of transportation networks: Taxonomy and annotation," European Journal of Operational Research, Elsevier, vol. 26(2), pages 187-201, August.
    9. Brumbaugh-Smith, J. & Shier, D., 1989. "An empirical investigation of some bicriterion shortest path algorithms," European Journal of Operational Research, Elsevier, vol. 43(2), pages 216-224, November.
    10. Mote, John & Murthy, Ishwar & Olson, David L., 1991. "A parametric approach to solving bicriterion shortest path problems," European Journal of Operational Research, Elsevier, vol. 53(1), pages 81-92, July.
    11. Tung Tung, Chi & Lin Chew, Kim, 1992. "A multicriteria Pareto-optimal path algorithm," European Journal of Operational Research, Elsevier, vol. 62(2), pages 203-209, October.
    12. Rajan Batta & Samuel S. Chiu, 1988. "Optimal Obnoxious Paths on a Network: Transportation of Hazardous Materials," Operations Research, INFORMS, vol. 36(1), pages 84-92, February.
    13. Martins, Ernesto Queiros Vieira, 1984. "On a multicriteria shortest path problem," European Journal of Operational Research, Elsevier, vol. 16(2), pages 236-245, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soroush, H.M., 2008. "Optimal paths in bi-attribute networks with fractional cost functions," European Journal of Operational Research, Elsevier, vol. 190(3), pages 633-658, November.
    2. Luigi Di Puglia Pugliese & Francesca Guerriero, 2013. "A Reference Point Approach for the Resource Constrained Shortest Path Problems," Transportation Science, INFORMS, vol. 47(2), pages 247-265, May.
    3. Rongrong Li & Yee Leung & Hui Lin & Bo Huang, 2013. "An adaptive compromise programming method for multi-objective path optimization," Journal of Geographical Systems, Springer, vol. 15(2), pages 211-228, April.
    4. Diclehan Tezcaner & Murat Köksalan, 2011. "An Interactive Algorithm for Multi-objective Route Planning," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 379-394, August.
    5. Özgür Özpeynirci, 2017. "On nadir points of multiobjective integer programming problems," Journal of Global Optimization, Springer, vol. 69(3), pages 699-712, November.
    6. P. Festa & F. Guerriero & A. Napoletano, 2019. "An auction-based approach for the re-optimization shortest path tree problem," Computational Optimization and Applications, Springer, vol. 74(3), pages 851-893, December.
    7. Gokhan Kirlik & Serpil Sayın, 2015. "Computing the nadir point for multiobjective discrete optimization problems," Journal of Global Optimization, Springer, vol. 62(1), pages 79-99, May.
    8. Xu, Haiyan & Marc Kilgour, D. & Hipel, Keith W. & Kemkes, Graeme, 2010. "Using matrices to link conflict evolution and resolution in a graph model," European Journal of Operational Research, Elsevier, vol. 207(1), pages 318-329, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Guerriero & R. Musmanno, 2001. "Label Correcting Methods to Solve Multicriteria Shortest Path Problems," Journal of Optimization Theory and Applications, Springer, vol. 111(3), pages 589-613, December.
    2. Soroush, H.M., 2008. "Optimal paths in bi-attribute networks with fractional cost functions," European Journal of Operational Research, Elsevier, vol. 190(3), pages 633-658, November.
    3. Xie, Chi & Travis Waller, S., 2012. "Parametric search and problem decomposition for approximating Pareto-optimal paths," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1043-1067.
    4. de Lima Pinto, Leizer & Bornstein, Cláudio Thomás & Maculan, Nelson, 2009. "The tricriterion shortest path problem with at least two bottleneck objective functions," European Journal of Operational Research, Elsevier, vol. 198(2), pages 387-391, October.
    5. Perny, Patrice & Spanjaard, Olivier, 2005. "A preference-based approach to spanning trees and shortest paths problems***," European Journal of Operational Research, Elsevier, vol. 162(3), pages 584-601, May.
    6. Luigi Di Puglia Pugliese & Francesca Guerriero, 2013. "A Reference Point Approach for the Resource Constrained Shortest Path Problems," Transportation Science, INFORMS, vol. 47(2), pages 247-265, May.
    7. Opasanon, Sathaporn & Miller-Hooks, Elise, 2006. "Multicriteria adaptive paths in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 173(1), pages 72-91, August.
    8. Yannick Kergosien & Antoine Giret & Emmanuel Néron & Gaël Sauvanet, 2022. "An Efficient Label-Correcting Algorithm for the Multiobjective Shortest Path Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 76-92, January.
    9. Gabrel, Virginie & Vanderpooten, Daniel, 2002. "Enumeration and interactive selection of efficient paths in a multiple criteria graph for scheduling an earth observing satellite," European Journal of Operational Research, Elsevier, vol. 139(3), pages 533-542, June.
    10. Minghe Sun, 2005. "Warm-Start Routines for Solving Augmented Weighted Tchebycheff Network Programs in Multiple-Objective Network Programming," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 422-437, November.
    11. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    12. Mingue SUn, 2010. "A Branch-and-Bound Algorithm for Representative Integer Efficient Solutions in Multiple Objective Network Programming Problems," Working Papers 0007, College of Business, University of Texas at San Antonio.
    13. Dung-Ying Lin & Chi Xie, 2011. "The Pareto-optimal Solution Set of the Equilibrium Network Design Problem with Multiple Commensurate Objectives," Networks and Spatial Economics, Springer, vol. 11(4), pages 727-751, December.
    14. Minghe Sun, 2003. "Procedures for Finding Nondominated Solutions for Multiple Objective Network Programming Problems," Transportation Science, INFORMS, vol. 37(2), pages 139-152, May.
    15. Suvrajeet Sen & Rekha Pillai & Shirish Joshi & Ajay K. Rathi, 2001. "A Mean-Variance Model for Route Guidance in Advanced Traveler Information Systems," Transportation Science, INFORMS, vol. 35(1), pages 37-49, February.
    16. Moradi, Siamak & Raith, Andrea & Ehrgott, Matthias, 2015. "A bi-objective column generation algorithm for the multi-commodity minimum cost flow problem," European Journal of Operational Research, Elsevier, vol. 244(2), pages 369-378.
    17. Hamacher, Horst W. & Pedersen, Christian Roed & Ruzika, Stefan, 2007. "Multiple objective minimum cost flow problems: A review," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1404-1422, February.
    18. Curtin, Kevin M. & Biba, Steve, 2011. "The Transit Route Arc-Node Service Maximization problem," European Journal of Operational Research, Elsevier, vol. 208(1), pages 46-56, January.
    19. B. Boffey & Francisco García & Gilbert Laporte & Juan Mesa & Blas Pelegrín, 1995. "Multiobjective routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(2), pages 167-220, December.
    20. Chang, Yu-Hern & Yeh, Chung-Hsing & Shen, Ching-Cheng, 2000. "A multiobjective model for passenger train services planning: application to Taiwan's high-speed rail line," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 91-106, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:151:y:2003:i:1:p:103-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.