IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v3y2015i3p390-419d55820.html
   My bibliography  Save this article

Multi-Objective Stochastic Optimization Programs for a Non-Life Insurance Company under Solvency Constraints

Author

Listed:
  • Massimiliano Kaucic

    (Department of Economics, Business, Mathematics and Statistics, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy)

  • Roberto Daris

    (Department of Economics, Business, Mathematics and Statistics, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy)

Abstract

In the paper, we introduce a multi-objective scenario-based optimization approach for chance-constrained portfolio selection problems. More specifically, a modified version of the normal constraint method is implemented with a global solver in order to generate a dotted approximation of the Pareto frontier for bi- and tri-objective programming problems. Numerical experiments are carried out on a set of portfolios to be optimized for an EU-based non-life insurance company. Both performance indicators and risk measures are managed as objectives. Results show that this procedure is effective and readily applicable to achieve suitable risk-reward tradeoff analysis.

Suggested Citation

  • Massimiliano Kaucic & Roberto Daris, 2015. "Multi-Objective Stochastic Optimization Programs for a Non-Life Insurance Company under Solvency Constraints," Risks, MDPI, vol. 3(3), pages 1-30, September.
  • Handle: RePEc:gam:jrisks:v:3:y:2015:i:3:p:390-419:d:55820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/3/3/390/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/3/3/390/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trindade, A. Alexandre & Uryasev, Stan & Shapiro, Alexander & Zrazhevsky, Grigory, 2007. "Financial prediction with constrained tail risk," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3524-3538, November.
    2. Kaucic, Massimiliano, 2010. "Investment using evolutionary learning methods and technical rules," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1717-1727, December.
    3. Roncalli, Thierry, 2013. "Introduction to Risk Parity and Budgeting," MPRA Paper 47679, University Library of Munich, Germany.
    4. Shukla, Pradyumn Kumar & Deb, Kalyanmoy, 2007. "On finding multiple Pareto-optimal solutions using classical and evolutionary generating methods," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1630-1652, September.
    5. Briec, Walter & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2013. "Portfolio selection with skewness: A comparison of methods and a generalized one fund result," European Journal of Operational Research, Elsevier, vol. 230(2), pages 412-421.
    6. Briec, Walter & Kerstens, Kristiaan, 2010. "Portfolio selection in multidimensional general and partial moment space," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 636-656, April.
    7. Alejandro Balbas & Beatriz Balbas & Raquel Balbas, 2013. "Optimal Reinsurance: A Risk Sharing Approach," Risks, MDPI, vol. 1(2), pages 1-12, August.
    8. Jarraya, Bilel & Bouri, Abdelfettah, 2013. "Multiobjective optimization for the asset allocation of European nonlife insurance companies," MPRA Paper 53697, University Library of Munich, Germany, revised 2013.
    9. Sancho Salcedo-Sanz & Leo Carro-Calvo & Mercè Claramunt & Ana Castañer & Maite Mármol, 2014. "Effectively Tackling Reinsurance Problems by Using Evolutionary and Swarm Intelligence Algorithms," Risks, MDPI, vol. 2(2), pages 1-14, April.
    10. Catherine Bruneau & Selim Mankai, 2012. "Optimal Economic Capital and Investment Decisions for a Non-Life Insurance Company," Post-Print hal-01385808, HAL.
    11. Zsolt Ugray & Leon Lasdon & John Plummer & Fred Glover & James Kelly & Rafael Martí, 2007. "Scatter Search and Local NLP Solvers: A Multistart Framework for Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 328-340, August.
    12. Thiemo Krink & Sandra Paterlini, 2011. "Multiobjective optimization using differential evolution for real-world portfolio optimization," Computational Management Science, Springer, vol. 8(1), pages 157-179, April.
    13. Steuer, Ralph E. & Na, Paul, 2003. "Multiple criteria decision making combined with finance: A categorized bibliographic study," European Journal of Operational Research, Elsevier, vol. 150(3), pages 496-515, November.
    14. Diana Roman & Kenneth Darby-Dowman & Gautam Mitra, 2007. "Mean-risk models using two risk measures: a multi-objective approach," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 443-458.
    15. Nunez-Letamendia, Laura, 2007. "Fitting the control parameters of a genetic algorithm: An application to technical trading systems design," European Journal of Operational Research, Elsevier, vol. 179(3), pages 847-868, June.
    16. Harris, Richard D.F. & Mazibas, Murat, 2013. "Dynamic hedge fund portfolio construction: A semi-parametric approach," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 139-149.
    17. Ralph Steuer & Yue Qi & Markus Hirschberger, 2007. "Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection," Annals of Operations Research, Springer, vol. 152(1), pages 297-317, July.
    18. Catherine Bruneau & Sélim Mankai, 2012. "Optimal Economic Capital and Investment: Decisions for a Non-life Insurance Company," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00665516, HAL.
    19. Catherine Bruneau & Sélim Mankai, 2012. "Optimal Economic Capital and Investment: Decisions for a Non-life Insurance Company," Post-Print hal-00665516, HAL.
    20. Catherine Bruneau & Sélim Mankai, 2012. "Optimal Economic Capital and Investment: Decisions for a Non-life Insurance Company," PSE-Ecole d'économie de Paris (Postprint) hal-00665516, HAL.
    21. Sujith Asanga & Alexandru Asimit & Alexandru Badescu & Steven Haberman, 2014. "Portfolio Optimization under Solvency Constraints: A Dynamical Approach," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(3), pages 394-416, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Staino & Emilio Russo & Massimo Costabile & Arturo Leccadito, 2023. "Minimum capital requirement and portfolio allocation for non-life insurance: a semiparametric model with Conditional Value-at-Risk (CVaR) constraint," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantin Zopounidis & Michael Doumpos, 2013. "Multicriteria decision systems for financial problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 241-261, July.
    2. Carlin C. F. Chu & Simon S. W. Li, 2024. "A multiobjective optimization approach for threshold determination in extreme value analysis for financial time series," Computational Management Science, Springer, vol. 21(1), pages 1-14, June.
    3. Qi, Yue & Liao, Kezhi & Liu, Tongyang & Zhang, Yu, 2022. "Originating multiple-objective portfolio selection by counter-COVID measures and analytically instigating robust optimization by mean-parameterized nondominated paths," Operations Research Perspectives, Elsevier, vol. 9(C).
    4. Hatem Masri, 2017. "A multiple stochastic goal programming approach for the agent portfolio selection problem," Annals of Operations Research, Springer, vol. 251(1), pages 179-192, April.
    5. Alessandro Staino & Emilio Russo & Massimo Costabile & Arturo Leccadito, 2023. "Minimum capital requirement and portfolio allocation for non-life insurance: a semiparametric model with Conditional Value-at-Risk (CVaR) constraint," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    6. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    7. Gianni Filograsso & Giacomo Tollo, 2023. "Adaptive evolutionary algorithms for portfolio selection problems," Computational Management Science, Springer, vol. 20(1), pages 1-38, December.
    8. Chen, Yan & Wang, Xuancheng, 2015. "A hybrid stock trading system using genetic network programming and mean conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 240(3), pages 861-871.
    9. Engau, Alexander, 2009. "Tradeoff-based decomposition and decision-making in multiobjective programming," European Journal of Operational Research, Elsevier, vol. 199(3), pages 883-891, December.
    10. Briec, Walter & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2011. "Portfolio Selection with Skewness: A Comparison and a Generalized Two Fund Separation Result," Working Papers 2011/09, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    11. Briec, Walter & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2013. "Portfolio selection with skewness: A comparison of methods and a generalized one fund result," European Journal of Operational Research, Elsevier, vol. 230(2), pages 412-421.
    12. Kerstens, Kristiaan & Mazza, Paolo & Ren, Tiantian & Van de Woestyne, Ignace, 2022. "Multi-Time and Multi-Moment Nonparametric Frontier-Based Fund Rating: Proposal and Buy-and-Hold Backtesting Strategy," Omega, Elsevier, vol. 113(C).
    13. Yue Qi, 2018. "On outperforming social-screening-indexing by multiple-objective portfolio selection," Annals of Operations Research, Springer, vol. 267(1), pages 493-513, August.
    14. Doering, Jana & Kizys, Renatas & Juan, Angel A. & Fitó, Àngels & Polat, Onur, 2019. "Metaheuristics for rich portfolio optimisation and risk management: Current state and future trends," Operations Research Perspectives, Elsevier, vol. 6(C).
    15. Yue Qi & Ralph E. Steuer & Maximilian Wimmer, 2017. "An analytical derivation of the efficient surface in portfolio selection with three criteria," Annals of Operations Research, Springer, vol. 251(1), pages 161-177, April.
    16. Amita Sharma & Aparna Mehra, 2017. "Financial analysis based sectoral portfolio optimization under second order stochastic dominance," Annals of Operations Research, Springer, vol. 256(1), pages 171-197, September.
    17. Francesco Cesarone & Manuel L. Martino & Fabio Tardella, 2023. "Mean-Variance-VaR portfolios: MIQP formulation and performance analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 1043-1069, September.
    18. Brandouy, Olivier & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2015. "Frontier-based vs. traditional mutual fund ratings: A first backtesting analysis," European Journal of Operational Research, Elsevier, vol. 242(1), pages 332-342.
    19. Andreu, Laura & Serrano, Miguel & Vicente, Luis, 2019. "Efficiency of mutual fund managers: A slacks-based manager efficiency index," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1180-1193.
    20. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:3:y:2015:i:3:p:390-419:d:55820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.