IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v25y2019i1d10.1007_s10732-018-9387-8.html
   My bibliography  Save this article

Use of a goal-constraint-based approach for finding the region of interest in multi-objective problems

Author

Listed:
  • Ricardo Landa

    (Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional)

  • Giomara Lárraga

    (Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional)

  • Gregorio Toscano

    (Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional)

Abstract

This paper presents a hybrid approach that combines an evolutionary algorithm with a classical multi-objective optimization technique to incorporate the preferences of the decision maker into the search process. The preferences are given as a vector of goals, which represent the desirable values for each objective. The proposed approach enhances the goal-constraint technique in such a way that, instead of use the provided $$\varepsilon $$ ε values to compute the upper bounds of the restated problem, it uses only the information of the vector of goals to generate the constraints. The bounds of the region of interest are obtained using an efficient constrained evolutionary optimization algorithm. Then, an interpolation method is placed in charge of populating such a region. It is worth noting that although goal-constraint is able to obtain the bounds of problems regardless of their number objectives, the interpolation method adopted in this paper is restricted to bi-objective problems. The proposed approach was validated using problems from the ZDT, DTLZ, and WFG benchmarks. In addition, it was compared with two well-known algorithms that use the g-dominance approach to incorporate the preferences of the decision maker. The results corroborate that the incorporation of a priori preferences into the proposed approach is useful to direct the search efforts towards the decision’s maker region of interest.

Suggested Citation

  • Ricardo Landa & Giomara Lárraga & Gregorio Toscano, 2019. "Use of a goal-constraint-based approach for finding the region of interest in multi-objective problems," Journal of Heuristics, Springer, vol. 25(1), pages 107-139, February.
  • Handle: RePEc:spr:joheur:v:25:y:2019:i:1:d:10.1007_s10732-018-9387-8
    DOI: 10.1007/s10732-018-9387-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-018-9387-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-018-9387-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dessouky, M. I. & Ghiassi, M. & Davis, W. J., 1986. "Estimates of the minimum nondominated criterion values in multiple-criteria decision-making," Engineering Costs and Production Economics, Elsevier, vol. 10(2), pages 95-104, June.
    2. Günter Rudolph & Oliver Schütze & Christian Grimme & Christian Domínguez-Medina & Heike Trautmann, 2016. "Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results," Computational Optimization and Applications, Springer, vol. 64(2), pages 589-618, June.
    3. Ehrgott, Matthias & Tenfelde-Podehl, Dagmar, 2003. "Computation of ideal and Nadir values and implications for their use in MCDM methods," European Journal of Operational Research, Elsevier, vol. 151(1), pages 119-139, November.
    4. Ana Ruiz & Rubén Saborido & Mariano Luque, 2015. "A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm," Journal of Global Optimization, Springer, vol. 62(1), pages 101-129, May.
    5. Oliver Schütze & Víctor Adrián Sosa Hernández & Heike Trautmann & Günter Rudolph, 2016. "The hypervolume based directed search method for multi-objective optimization problems," Journal of Heuristics, Springer, vol. 22(3), pages 273-300, June.
    6. Benjamin Martin & Alexandre Goldsztejn & Laurent Granvilliers & Christophe Jermann, 2016. "On continuation methods for non-linear bi-objective optimization: towards a certified interval-based approach," Journal of Global Optimization, Springer, vol. 64(1), pages 3-16, January.
    7. Pekka Korhonen & Seppo Salo & Ralph E. Steuer, 1997. "A Heuristic for Estimating Nadir Criterion Values in Multiple Objective Linear Programming," Operations Research, INFORMS, vol. 45(5), pages 751-757, October.
    8. Honggang Wang, 2013. "Zigzag Search for Continuous Multiobjective Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 654-665, November.
    9. Molina, Julin & Santana, Luis V. & Hernandez-Daz, Alfredo G. & Coello Coello, Carlos A. & Caballero, Rafael, 2009. "g-dominance: Reference point based dominance for multiobjective metaheuristics," European Journal of Operational Research, Elsevier, vol. 197(2), pages 685-692, September.
    10. Fernandez, Eduardo & Leyva, Juan Carlos, 2004. "A method based on multiobjective optimization for deriving a ranking from a fuzzy preference relation," European Journal of Operational Research, Elsevier, vol. 154(1), pages 110-124, April.
    11. Alves, Maria João & Costa, João Paulo, 2009. "An exact method for computing the nadir values in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 198(2), pages 637-646, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alves, Maria João & Costa, João Paulo, 2009. "An exact method for computing the nadir values in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 198(2), pages 637-646, October.
    2. Murat Köksalan & Banu Lokman, 2015. "Finding nadir points in multi-objective integer programs," Journal of Global Optimization, Springer, vol. 62(1), pages 55-77, May.
    3. Özgür Özpeynirci, 2017. "On nadir points of multiobjective integer programming problems," Journal of Global Optimization, Springer, vol. 69(3), pages 699-712, November.
    4. He, Li-Jun & Ju, Xue-Wei & Zhang, Wei-Bo, 2018. "A fitness assignment strategy based on the grey and entropy parallel analysis and its application to MOEAAuthor-Name: Zhu, Guang-Yu," European Journal of Operational Research, Elsevier, vol. 265(3), pages 813-828.
    5. Jornada, Daniel & Leon, V. Jorge, 2016. "Biobjective robust optimization over the efficient set for Pareto set reduction," European Journal of Operational Research, Elsevier, vol. 252(2), pages 573-586.
    6. Ana Ruiz & Rubén Saborido & Mariano Luque, 2015. "A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm," Journal of Global Optimization, Springer, vol. 62(1), pages 101-129, May.
    7. Serpil Sayin, 2000. "Optimizing Over the Efficient Set Using a Top-Down Search of Faces," Operations Research, INFORMS, vol. 48(1), pages 65-72, February.
    8. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    9. Johan M. Bogoya & Andrés Vargas & Oliver Schütze, 2019. "The Averaged Hausdorff Distances in Multi-Objective Optimization: A Review," Mathematics, MDPI, vol. 7(10), pages 1-35, September.
    10. Luque, Mariano & Ruiz, Francisco & Steuer, Ralph E., 2010. "Modified interactive Chebyshev algorithm (MICA) for convex multiobjective programming," European Journal of Operational Research, Elsevier, vol. 204(3), pages 557-564, August.
    11. Weihua Zhang & Marc Reimann, 2014. "Towards a multi-objective performance assessment and optimization model of a two-echelon supply chain using SCOR metrics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 591-622, December.
    12. Kahina Ghazli & Nicolas Gillis & Mustapha Moulaï, 2020. "Optimizing over the properly efficient set of convex multi-objective optimization problems," Annals of Operations Research, Springer, vol. 295(2), pages 575-604, December.
    13. Ana B. Ruiz & Rubén Saborido & José D. Bermúdez & Mariano Luque & Enriqueta Vercher, 2020. "Preference-based evolutionary multi-objective optimization for portfolio selection: a new credibilistic model under investor preferences," Journal of Global Optimization, Springer, vol. 76(2), pages 295-315, February.
    14. Gokhan Kirlik & Serpil Sayın, 2015. "Computing the nadir point for multiobjective discrete optimization problems," Journal of Global Optimization, Springer, vol. 62(1), pages 79-99, May.
    15. A.P. Wierzbicki, 1998. "Reference Point Methods in Vector Optimization and Decision Support," Working Papers ir98017, International Institute for Applied Systems Analysis.
    16. Fernandez, Eduardo & Navarro, Jorge & Bernal, Sergio, 2010. "Handling multicriteria preferences in cluster analysis," European Journal of Operational Research, Elsevier, vol. 202(3), pages 819-827, May.
    17. Tobias Kuhn & Stefan Ruzika, 2017. "A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions," Journal of Global Optimization, Springer, vol. 67(3), pages 581-600, March.
    18. Dias, Luis C. & Lamboray, Claude, 2010. "Extensions of the prudence principle to exploit a valued outranking relation," European Journal of Operational Research, Elsevier, vol. 201(3), pages 828-837, March.
    19. Koronakos, Gregory & Sotiros, Dimitris & Despotis, Dimitris K. & Kritikos, Manolis N., 2022. "Fair efficiency decomposition in network DEA: A compromise programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    20. Rong Tang & Ke Li & Wei Ding & Yuntao Wang & Huicheng Zhou & Guangtao Fu, 2020. "Reference Point Based Multi-Objective Optimization of Reservoir Operation: a Comparison of Three Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1005-1020, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:25:y:2019:i:1:d:10.1007_s10732-018-9387-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.