IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v188y2008i3p662-682.html
   My bibliography  Save this article

Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization

Author

Listed:
  • Miglierina, E.
  • Molho, E.
  • Recchioni, M.C.

Abstract

No abstract is available for this item.

Suggested Citation

  • Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
  • Handle: RePEc:eee:ejores:v:188:y:2008:i:3:p:662-682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00490-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Hillermeier, 2001. "Generalized Homotopy Approach to Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 557-583, September.
    2. Maria Cristina Recchioni, 2003. "A path following method for box-constrained multiobjective optimization with applications to goal programming problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(1), pages 69-85, September.
    3. K Deb, 2001. "Nonlinear goal programming using multi-objective genetic algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(3), pages 291-302, March.
    4. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    5. G. Pacelli & M. C. Recchioni, 2000. "Monotone Variable–Metric Algorithm for Linearly Constrained Nonlinear Programming," Journal of Optimization Theory and Applications, Springer, vol. 104(2), pages 255-279, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Recchioni, Maria Cristina & Tedeschi, Gabriele, 2017. "From bond yield to macroeconomic instability: A parsimonious affine model," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1116-1135.
    2. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    3. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    4. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    5. Matteo Lapucci & Pierluigi Mansueto, 2023. "A limited memory Quasi-Newton approach for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 85(1), pages 33-73, May.
    6. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    7. Bento, G.C. & Cruz Neto, J.X. & Oliveira, P.R. & Soubeyran, A., 2014. "The self regulation problem as an inexact steepest descent method for multicriteria optimization," European Journal of Operational Research, Elsevier, vol. 235(3), pages 494-502.
    8. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    9. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    10. Maria Cristina Recchioni & Gabriele Tedeschi, 2016. "From bond yield to macroeconomic instability: The effect of negative interest rates," Working Papers 2016/06, Economics Department, Universitat Jaume I, Castellón (Spain).
    11. Qing-Rui He & Chun-Rong Chen & Sheng-Jie Li, 2023. "Spectral conjugate gradient methods for vector optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 457-489, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    2. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    3. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    4. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    5. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    6. Honggang Wang, 2013. "Zigzag Search for Continuous Multiobjective Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 654-665, November.
    7. Pokharel, Shaligram, 2008. "A two objective model for decision making in a supply chain," International Journal of Production Economics, Elsevier, vol. 111(2), pages 378-388, February.
    8. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    9. Kely D. V. Villacorta & Paulo R. Oliveira & Antoine Soubeyran, 2014. "A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 865-889, March.
    10. Miglierina Enrico & Molho Elena & Recchioni Maria Cristina, 2006. "Box-constrained vector optimization: a steepest descent method without “a priori” scalarization," Economics and Quantitative Methods qf0603, Department of Economics, University of Insubria.
    11. T. Reshma & K. Reddy & Deva Pratap & Mehdi Ahmedi & V. Agilan, 2015. "Optimization of Calibration Parameters for an Event Based Watershed Model Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4589-4606, October.
    12. S Dhouib & A Kharrat & H Chabchoub, 2011. "Goal programming using multiple objective hybrid metaheuristic algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 677-689, April.
    13. J. Y. Bello Cruz & G. Bouza Allende, 2014. "A Steepest Descent-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 371-391, August.
    14. X. M. Wang & J. H. Wang & C. Li, 2023. "Convergence of Inexact Steepest Descent Algorithm for Multiobjective Optimizations on Riemannian Manifolds Without Curvature Constraints," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 187-214, July.
    15. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    16. Suyun Liu & Luis Nunes Vicente, 2022. "Accuracy and fairness trade-offs in machine learning: a stochastic multi-objective approach," Computational Management Science, Springer, vol. 19(3), pages 513-537, July.
    17. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    18. Gezen, Mesliha & Karaaslan, Abdulkerim, 2022. "Energy planning based on Vision-2023 of Turkey with a goal programming under fuzzy multi-objectives," Energy, Elsevier, vol. 261(PA).
    19. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    20. Bagdon, Benjamin A. & Huang, Ching-Hsun & Dewhurst, Stephen, 2016. "Managing for ecosystem services in northern Arizona ponderosa pine forests using a novel simulation-to-optimization methodology," Ecological Modelling, Elsevier, vol. 324(C), pages 11-27.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:188:y:2008:i:3:p:662-682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.