IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v83y2022i2d10.1007_s10589-022-00414-7.html
   My bibliography  Save this article

Globally convergent Newton-type methods for multiobjective optimization

Author

Listed:
  • M. L. N. Gonçalves

    (IME, Universidade Federal de Goiás)

  • F. S. Lima

    (IME, Universidade Federal de Goiás)

  • L. F. Prudente

    (IME, Universidade Federal de Goiás)

Abstract

We propose two Newton-type methods for solving (possibly) nonconvex unconstrained multiobjective optimization problems. The first is directly inspired by the Newton method designed to solve convex problems, whereas the second uses second-order information of the objective functions with ingredients of the steepest descent method. One of the key points of our approaches is to impose some safeguard strategies on the search directions. These strategies are associated to the conditions that prevent, at each iteration, the search direction to be too close to orthogonality with the multiobjective steepest descent direction and require a proportionality between the lengths of such directions. In order to fulfill the demanded safeguard conditions on the search directions of Newton-type methods, we adopt the technique in which the Hessians are modified, if necessary, by adding multiples of the identity. For our first Newton-type method, it is also shown that, under convexity assumptions, the local superlinear rate of convergence (or quadratic, in the case where the Hessians of the objectives are Lipschitz continuous) to a local efficient point of the given problem is recovered. The global convergences of the aforementioned methods are based, first, on presenting and establishing the global convergence of a general algorithm and, then, showing that the new methods fall in this general algorithm. Numerical experiments illustrating the practical advantages of the proposed Newton-type schemes are presented.

Suggested Citation

  • M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
  • Handle: RePEc:spr:coopap:v:83:y:2022:i:2:d:10.1007_s10589-022-00414-7
    DOI: 10.1007/s10589-022-00414-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00414-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00414-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    2. C. Hillermeier, 2001. "Generalized Homotopy Approach to Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 557-583, September.
    3. Ellen Fukuda & L. Graña Drummond, 2013. "Inexact projected gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 473-493, April.
    4. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    5. Kanako Mita & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Nonmonotone line searches for unconstrained multiobjective optimization problems," Journal of Global Optimization, Springer, vol. 75(1), pages 63-90, September.
    6. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Lapucci & Pierluigi Mansueto, 2023. "A limited memory Quasi-Newton approach for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 85(1), pages 33-73, May.
    2. Andrea Cristofari & Marianna Santis & Stefano Lucidi, 2024. "On Necessary Optimality Conditions for Sets of Points in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 126-145, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    2. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    3. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    4. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    5. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    6. Bento, G.C. & Cruz Neto, J.X. & Oliveira, P.R. & Soubeyran, A., 2014. "The self regulation problem as an inexact steepest descent method for multicriteria optimization," European Journal of Operational Research, Elsevier, vol. 235(3), pages 494-502.
    7. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    8. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    9. Chen, Jian & Tang, Liping & Yang, Xinmin, 2023. "A Barzilai-Borwein descent method for multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 196-209.
    10. Qing-Rui He & Chun-Rong Chen & Sheng-Jie Li, 2023. "Spectral conjugate gradient methods for vector optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 457-489, November.
    11. Ellen H. Fukuda & L. M. Graña Drummond & Fernanda M. P. Raupp, 2016. "An external penalty-type method for multicriteria," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 493-513, July.
    12. Morovati, Vahid & Pourkarimi, Latif, 2019. "Extension of Zoutendijk method for solving constrained multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 44-57.
    13. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    14. Kanako Mita & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Nonmonotone line searches for unconstrained multiobjective optimization problems," Journal of Global Optimization, Springer, vol. 75(1), pages 63-90, September.
    15. X. M. Wang & J. H. Wang & C. Li, 2023. "Convergence of Inexact Steepest Descent Algorithm for Multiobjective Optimizations on Riemannian Manifolds Without Curvature Constraints," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 187-214, July.
    16. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    17. Suyun Liu & Luis Nunes Vicente, 2023. "Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 165-186, July.
    18. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    19. Orizon P. Ferreira & Mauricio S. Louzeiro & Leandro F. Prudente, 2020. "Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 507-533, February.
    20. Matteo Lapucci & Pierluigi Mansueto, 2023. "A limited memory Quasi-Newton approach for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 85(1), pages 33-73, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:83:y:2022:i:2:d:10.1007_s10589-022-00414-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.