IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i2p1053-1060.html
   My bibliography  Save this article

Nonparametric maximum likelihood analysis of clustered current status data with the gamma-frailty Cox model

Author

Listed:
  • Wen, Chi-Chung
  • Chen, Yi-Hau

Abstract

The Cox model with frailties has been popular for regression analysis of clustered event time data under right censoring. However, due to the lack of reliable computation algorithms, the frailty Cox model has been rarely applied to clustered current status data, where the clustered event times are subject to a special type of interval censoring such that we only observe for each event time whether it exceeds an examination (censoring) time or not. Motivated by the cataract dataset from a cross-sectional study, where bivariate current status data were observed for the occurrence of cataracts in the right and left eyes of each study subject, we develop a very efficient and stable computation algorithm for nonparametric maximum likelihood estimation of gamma-frailty Cox models with clustered current status data. The algorithm proposed is based on a set of self-consistency equations and the contraction principle. A convenient profile-likelihood approach is proposed for variance estimation. Simulation and real data analysis exhibit the nice performance of our proposal.

Suggested Citation

  • Wen, Chi-Chung & Chen, Yi-Hau, 2011. "Nonparametric maximum likelihood analysis of clustered current status data with the gamma-frailty Cox model," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1053-1060, February.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:1053-1060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00328-2
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mongoué-Tchokoté, Solange & Kim, Jong-Sung, 2008. "New statistical software for the proportional hazards model with current status data," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4272-4286, May.
    2. C. P. Farrington & M. N. Kanaan & N. J. Gay, 2001. "Estimation of the basic reproduction number for infectious diseases from age‐stratified serological survey data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 251-292.
    3. D. Zeng & D. Y. Lin, 2007. "Maximum likelihood estimation in semiparametric regression models with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 507-564, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jialiang Li & Tonghui Yu & Jing Lv & Mei‐Ling Ting Lee, 2021. "Semiparametric model averaging prediction for lifetime data via hazards regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1187-1209, November.
    2. Donglin Zeng & Fei Gao & D. Y. Lin, 2017. "Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data," Biometrika, Biometrika Trust, vol. 104(3), pages 505-525.
    3. Shuwei Li & Jianguo Sun & Tian Tian & Xia Cui, 2020. "Semiparametric regression analysis of doubly censored failure time data from cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 315-338, April.
    4. Gamage, Prabhashi W. Withana & McMahan, Christopher S. & Wang, Lianming & Tu, Wanzhu, 2018. "A Gamma-frailty proportional hazards model for bivariate interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 354-366.
    5. Qingning Zhou & Tao Hu & Jianguo Sun, 2017. "A Sieve Semiparametric Maximum Likelihood Approach for Regression Analysis of Bivariate Interval-Censored Failure Time Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 664-672, April.
    6. Du, Mingyue & Li, Huiqiong & Sun, Jianguo, 2021. "Regression analysis of censored data with nonignorable missing covariates and application to Alzheimer Disease," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    7. Wang, Naichen & Wang, Lianming & McMahan, Christopher S., 2015. "Regression analysis of bivariate current status data under the Gamma-frailty proportional hazards model using the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 140-150.
    8. Li, Shuwei & Hu, Tao & Wang, Peijie & Sun, Jianguo, 2017. "Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 75-86.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Chen & Li Hsu & Kathleen Malone, 2009. "A Frailty-Model-Based Approach to Estimating the Age-Dependent Penetrance Function of Candidate Genes Using Population-Based Case-Control Study Designs: An Application to Data on the BRCA1 Gene," Biometrics, The International Biometric Society, vol. 65(4), pages 1105-1114, December.
    2. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    3. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    4. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.
    5. Lahrouz, A. & El Mahjour, H. & Settati, A. & Bernoussi, A., 2018. "Dynamics and optimal control of a non-linear epidemic model with relapse and cure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 299-317.
    6. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    7. Yanqing Sun & Rajeshwari Sundaram & Yichuan Zhao, 2009. "Empirical Likelihood Inference for the Cox Model with Time‐dependent Coefficients via Local Partial Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 444-462, September.
    8. Chen, Songxi, 2012. "Estimation in semiparametric models with missing data," MPRA Paper 46216, University Library of Munich, Germany.
    9. Mingzhe Wu & Ming Zheng & Wen Yu & Ruofan Wu, 2018. "Estimation and variable selection for semiparametric transformation models under a more efficient cohort sampling design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 570-596, September.
    10. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    11. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    12. Christoph Breunig & Peter Haan, 2018. "Nonparametric Regression with Selectively Missing Covariates," Papers 1810.00411, arXiv.org, revised Oct 2020.
    13. Mondal, Shoubhik & Subramanian, Sundarraman, 2014. "Model assisted Cox regression," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 281-303.
    14. Steven Abrams & Marc Aerts & Geert Molenberghs & Niel Hens, 2017. "Parametric overdispersed frailty models for current status data," Biometrics, The International Biometric Society, vol. 73(4), pages 1388-1400, December.
    15. Alexander Begun & Anatoli Yashin, 2019. "Study of the bivariate survival data using frailty models based on Lévy processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 37-67, March.
    16. Song Chen & Ingrid Van Keilegom, 2013. "Estimation in semiparametric models with missing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 785-805, August.
    17. Hyokyoung G. Hong & Xuerong Chen & David C. Christiani & Yi Li, 2018. "Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes," Biometrics, The International Biometric Society, vol. 74(2), pages 421-429, June.
    18. Qi Liu & Chun Li & Valentine Wanga & Bryan E. Shepherd, 2018. "Covariate†adjusted Spearman's rank correlation with probability†scale residuals," Biometrics, The International Biometric Society, vol. 74(2), pages 595-605, June.
    19. Frank Eriksson & Thomas Scheike, 2015. "Additive gamma frailty models with applications to competing risks in related individuals," Biometrics, The International Biometric Society, vol. 71(3), pages 677-686, September.
    20. Frank Eriksson & Torben Martinussen & Thomas H. Scheike, 2015. "Clustered Survival Data with Left-truncation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1149-1166, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:1053-1060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.