IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i1d10.1007_s00362-018-01080-w.html
   My bibliography  Save this article

On semiparametric transformation model with LTRC data: pseudo likelihood approach

Author

Listed:
  • Chyong-Mei Chen

    (National Yang-Ming University)

  • Pao-sheng Shen

    (Tunghai University)

  • Yi Liu

    (Tunghai University)

Abstract

When the distribution of the truncation time is known up to a finite-dimensional parameter vector, many researches have been conducted with the objective to improve the efficiency of estimation for nonparametric or semiparametric model with left-truncated and right-censored (LTRC) data. When the distribution of truncation times is unspecified, one approach is to use the conditional maximum likelihood estimators (cMLE) (Chen and Shen in Lifetime Data Anal https://doi.org/10.1007/s10985-016-9385-9 , 2017). Although the cMLE has nice asymptotic properties, it is not efficient since the conditional likelihood function does not incorporate information on the distribution of truncation time. In this article, we aim to develop a more efficient estimator by considering the full likelihood function. Following Turnbull (J R Stat Soc B 38:290–295, 1976) and Qin et al. (J Am Stat Assoc 106:1434–1449, 2011), we treat the unobserved (left-truncated) subpopulation as missing data and propose a two-stage approach for obtaining the pseudo maximum likelihood estimators (PMLE) of regression parameters. In the first stage, the distribution of left truncation time is estimated by the inverse-probability-weighted (IPW) estimator (Wang in J Am Stat Assoc 86:130–143, 1991). In the second stage, we obtain the pseudo complete-data likelihood function by replacing the distribution of truncation time with the IPW estimator in the full likelihood. We propose an expectation–maximization algorithm for obtaining the PMLE and establish the consistency of the PMLE. Simulation results show that the PMLE outperforms the cMLE in terms of mean squared error. The PMLE can also be used to analyze the length-biased data, where the truncation time is uniformly distributed. We demonstrate that the PMLE works more robust against the support assumption of truncation time for length-biased data compared with the MLE proposed by Qin et al. (2011). We apply our proposed method to the channing house data. While the PMLE is quite appealing under specific cases with independent censoring and time-invariant covariates, its applicability, as shown in simulation study, can be rather restricted for more general settings.

Suggested Citation

  • Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:1:d:10.1007_s00362-018-01080-w
    DOI: 10.1007/s00362-018-01080-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-018-01080-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-018-01080-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Micha Mandel & Rebecca A. Betensky, 2007. "Testing Goodness of Fit of a Uniform Truncation Model," Biometrics, The International Biometric Society, vol. 63(2), pages 405-412, June.
    2. Jing Qin & Yu Shen, 2010. "Statistical Methods for Analyzing Right-Censored Length-Biased Data under Cox Model," Biometrics, The International Biometric Society, vol. 66(2), pages 382-392, June.
    3. Pao-sheng Shen, 2011. "Semiparametric analysis of transformation models with left-truncated and right-censored data," Computational Statistics, Springer, vol. 26(3), pages 521-537, September.
    4. Yu-Jen Cheng & Chiung-Yu Huang, 2014. "Combined estimating equation approaches for semiparametric transformation models with length-biased survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 608-618, September.
    5. Jane Paik Kim & Wenbin Lu & Tony Sit & Zhiliang Ying, 2013. "A Unified Approach to Semiparametric Transformation Models Under General Biased Sampling Schemes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 217-227, March.
    6. Yi-Hau Chen, 2009. "Weighted Breslow-type and maximum likelihood estimation in semiparametric transformation models," Biometrika, Biometrika Trust, vol. 96(3), pages 591-600.
    7. Donglin Zeng & D. Y. Lin, 2006. "Efficient estimation of semiparametric transformation models for counting processes," Biometrika, Biometrika Trust, vol. 93(3), pages 627-640, September.
    8. Chiung-Yu Huang & Jing Qin, 2013. "Semiparametric estimation for the additive hazards model with left-truncated and right-censored data," Biometrika, Biometrika Trust, vol. 100(4), pages 877-888.
    9. Pao-Sheng Shen, 2011. "Semiparametric analysis of transformation models with doubly censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(4), pages 675-682, November.
    10. Wei Yann Tsai, 2009. "Pseudo-partial likelihood for proportional hazards models with biased-sampling data," Biometrika, Biometrika Trust, vol. 96(3), pages 601-615.
    11. Kani Chen, 2002. "Semiparametric analysis of transformation models with censored data," Biometrika, Biometrika Trust, vol. 89(3), pages 659-668, August.
    12. D. Zeng & D. Y. Lin, 2007. "Maximum likelihood estimation in semiparametric regression models with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 507-564, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chyong-Mei Chen & Pao-Sheng Shen, 2018. "Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 250-272, April.
    2. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    3. Ma, Huijuan & Zhang, Feipeng & Zhou, Yong, 2015. "Composite estimating equation approach for additive risk model with length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 45-53.
    4. Xi Ning & Yinghao Pan & Yanqing Sun & Peter B. Gilbert, 2023. "A semiparametric Cox–Aalen transformation model with censored data," Biometrics, The International Biometric Society, vol. 79(4), pages 3111-3125, December.
    5. Yu-Jen Cheng & Chiung-Yu Huang, 2014. "Combined estimating equation approaches for semiparametric transformation models with length-biased survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 608-618, September.
    6. Fan Wu & Sehee Kim & Jing Qin & Rajiv Saran & Yi Li, 2018. "A pairwise likelihood augmented Cox estimator for left†truncated data," Biometrics, The International Biometric Society, vol. 74(1), pages 100-108, March.
    7. Pao-sheng Shen, 2014. "Semiparametric regression analysis for clustered doubly-censored data," Computational Statistics, Springer, vol. 29(3), pages 813-828, June.
    8. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    9. Qiu, Zhiping & Zhou, Yong, 2015. "Partially linear transformation models with varying coefficients for multivariate failure time data," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 144-166.
    10. Micha Mandel & Jacobo de Uña†à lvarez & David K. Simon & Rebecca A. Betensky, 2018. "Inverse probability weighted Cox regression for doubly truncated data," Biometrics, The International Biometric Society, vol. 74(2), pages 481-487, June.
    11. Chi-Chung Wen & Yi-Hau Chen, 2014. "Semiparametric analysis of incomplete current status outcome data under transformation models," Biometrics, The International Biometric Society, vol. 70(2), pages 335-345, June.
    12. Lu Mao & D. Y. Lin, 2017. "Efficient estimation of semiparametric transformation models for the cumulative incidence of competing risks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 573-587, March.
    13. Chia-Hui Huang, 2019. "Mixture regression models for the gap time distributions and illness–death processes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 168-188, January.
    14. Chengbo Li & Yong Zhou, 2021. "The estimation for the general additive–multiplicative hazard model using the length-biased survival data," Statistical Papers, Springer, vol. 62(1), pages 53-74, February.
    15. Pao-sheng Shen, 2012. "Analysis of left-truncated right-censored or doubly censored data with linear transformation models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 584-603, September.
    16. Myeonggyun Lee & Andrea B. Troxel & Mengling Liu, 2024. "Partial-linear single-index transformation models with censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 701-720, October.
    17. Sangbum Choi & Xuelin Huang, 2012. "A General Class of Semiparametric Transformation Frailty Models for Nonproportional Hazards Survival Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1126-1135, December.
    18. Yi‐Hau Chen, 2010. "Semiparametric marginal regression analysis for dependent competing risks under an assumed copula," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 235-251, March.
    19. Na Hu & Xuerong Chen & Jianguo Sun, 2015. "Regression Analysis of Length-biased and Right-censored Failure Time Data with Missing Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 438-452, June.
    20. Qui Tran & Kelley M. Kidwell & Alex Tsodikov, 2018. "A joint model of cancer incidence, metastasis, and mortality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 385-406, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:1:d:10.1007_s00362-018-01080-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.