IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i2p595-605.html
   My bibliography  Save this article

Covariate†adjusted Spearman's rank correlation with probability†scale residuals

Author

Listed:
  • Qi Liu
  • Chun Li
  • Valentine Wanga
  • Bryan E. Shepherd

Abstract

It is desirable to adjust Spearman's rank correlation for covariates, yet existing approaches have limitations. For example, the traditionally defined partial Spearman's correlation does not have a sensible population parameter, and the conditional Spearman's correlation defined with copulas cannot be easily generalized to discrete variables. We define population parameters for both partial and conditional Spearman's correlation through concordance–discordance probabilities. The definitions are natural extensions of Spearman's rank correlation in the presence of covariates and are general for any orderable random variables. We show that they can be neatly expressed using probability†scale residuals (PSRs). This connection allows us to derive simple estimators. Our partial estimator for Spearman's correlation between X and Y adjusted for Z is the correlation of PSRs from models of X on Z and of Y on Z, which is analogous to the partial Pearson's correlation derived as the correlation of observed†minus†expected residuals. Our conditional estimator is the conditional correlation of PSRs. We describe estimation and inference, and highlight the use of semiparametric cumulative probability models, which allow preservation of the rank†based nature of Spearman's correlation. We conduct simulations to evaluate the performance of our estimators and compare them with other popular measures of association, demonstrating their robustness and efficiency. We illustrate our method in two applications, a biomarker study and a large survey.

Suggested Citation

  • Qi Liu & Chun Li & Valentine Wanga & Bryan E. Shepherd, 2018. "Covariate†adjusted Spearman's rank correlation with probability†scale residuals," Biometrics, The International Biometric Society, vol. 74(2), pages 595-605, June.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:595-605
    DOI: 10.1111/biom.12812
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12812
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gijbels, Irène & Veraverbeke, Noël & Omelka, Marel, 2011. "Conditional copulas, association measures and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1919-1932, May.
    2. Chun Li & Bryan E. Shepherd, 2012. "A new residual for ordinal outcomes," Biometrika, Biometrika Trust, vol. 99(2), pages 473-480.
    3. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    4. Li, Chun & Shepherd, Bryan E., 2010. "Test of Association Between Two Ordinal Variables While Adjusting for Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 612-620.
    5. Noël Veraverbeke & Marek Omelka & Irène Gijbels, 2011. "Estimation of a Conditional Copula and Association Measures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(4), pages 766-780, December.
    6. D. Zeng & D. Y. Lin, 2007. "Maximum likelihood estimation in semiparametric regression models with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 507-564, September.
    7. Chen, Qingxia & Zeng, Donglin & Ibrahim, Joseph G., 2007. "Sieve Maximum Likelihood Estimation for Regression Models With Covariates Missing at Random," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1309-1317, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Svetlana K. Eden & Chun Li & Bryan E. Shepherd, 2022. "Nonparametric estimation of Spearman's rank correlation with bivariate survival data," Biometrics, The International Biometric Society, vol. 78(2), pages 421-434, June.
    2. Wei, Zheng & Wang, Li & Liao, Shu-Min & Kim, Daeyoung, 2023. "On the exploration of regression dependence structures in multidimensional contingency tables with ordinal response variables," Journal of Multivariate Analysis, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-François Plante, 2017. "Rank correlation under categorical confounding," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-19, December.
    2. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    3. Emura, Takeshi & Lai, Ching-Chieh & Sun, Li-Hsien, 2023. "Change point estimation under a copula-based Markov chain model for binomial time series," Econometrics and Statistics, Elsevier, vol. 28(C), pages 120-137.
    4. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    5. Craiu, V. Radu & Sabeti, Avideh, 2012. "In mixed company: Bayesian inference for bivariate conditional copula models with discrete and continuous outcomes," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 106-120.
    6. Gijbels, Irène & Sznajder, Dominik, 2013. "Testing tail monotonicity by constrained copula estimation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 338-351.
    7. Chen, Songxi, 2012. "Estimation in semiparametric models with missing data," MPRA Paper 46216, University Library of Munich, Germany.
    8. Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
    9. Jonas Meier, 2020. "Multivariate Distribution Regression," Diskussionsschriften dp2023, Universitaet Bern, Departement Volkswirtschaft.
    10. Christoph Breunig & Peter Haan, 2018. "Nonparametric Regression with Selectively Missing Covariates," Papers 1810.00411, arXiv.org, revised Oct 2020.
    11. Song Chen & Ingrid Van Keilegom, 2013. "Estimation in semiparametric models with missing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 785-805, August.
    12. Marra, Giampiero & Radice, Rosalba, 2017. "Bivariate copula additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 99-113.
    13. Grazian, Clara & Dalla Valle, Luciana & Liseo, Brunero, 2022. "Approximate Bayesian conditional copulas," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    14. Gardes, Laurent & Girard, Stéphane, 2015. "Nonparametric estimation of the conditional tail copula," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 1-16.
    15. Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    16. Lu Lu & Sujit Ghosh, 2024. "Nonparametric Estimation of Conditional Copula Using Smoothed Checkerboard Bernstein Sieves," Mathematics, MDPI, vol. 12(8), pages 1-17, April.
    17. Gijbels, Irène & Omelka, Marek & Pešta, Michal & Veraverbeke, Noël, 2017. "Score tests for covariate effects in conditional copulas," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 111-133.
    18. Nurudeen A. Adegoke & Andrew Punnett & Marti J. Anderson, 2022. "Estimation of Multivariate Dependence Structures via Constrained Maximum Likelihood," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 240-260, June.
    19. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    20. EnDer Su, 2018. "Measuring contagion risk in high volatility state among Taiwanese major banks," Risk Management, Palgrave Macmillan, vol. 20(3), pages 185-241, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:595-605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.