IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v123y2014icp281-303.html
   My bibliography  Save this article

Model assisted Cox regression

Author

Listed:
  • Mondal, Shoubhik
  • Subramanian, Sundarraman

Abstract

Semiparametric random censorship (SRC) models (Dikta, 1998) [7], derive their rationale from their ability to utilize parametric ideas within the random censorship environment. An extension of this approach is developed for Cox regression, producing new estimators of the regression parameter and baseline cumulative hazard function. Under correct parametric specification, the proposed estimator of the regression parameter and the baseline cumulative hazard function are shown to be asymptotically as or more efficient than their standard Cox regression counterparts. Numerical studies are presented to showcase the efficacy of the proposed approach even under significant misspecification. Two real examples are provided. A further extension to the case of missing censoring indicators is also developed and an illustration with pseudo-real data is provided.

Suggested Citation

  • Mondal, Shoubhik & Subramanian, Sundarraman, 2014. "Model assisted Cox regression," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 281-303.
  • Handle: RePEc:eee:jmvana:v:123:y:2014:i:c:p:281-303
    DOI: 10.1016/j.jmva.2013.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13002054
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenbin Lu, 2008. "Maximum likelihood estimation in the proportional hazards cure model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 545-574, September.
    2. Anastasios A. Tsiatis, 2002. "Multiple imputation methods for testing treatment differences in survival distributions with missing cause of failure," Biometrika, Biometrika Trust, vol. 89(1), pages 238-244, March.
    3. Ming Yuan, 2005. "Semiparametric censorship model with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(2), pages 489-514, December.
    4. Subramanian, Sundarraman, 2012. "Model-based likelihood ratio confidence intervals for survival functions," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 626-635.
    5. D. Zeng & D. Y. Lin, 2007. "Maximum likelihood estimation in semiparametric regression models with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 507-564, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nubyra Ahmed & Sundarraman Subramanian, 2016. "Semiparametric simultaneous confidence bands for the difference of survival functions," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 504-530, October.
    2. Dikta, Gerhard & Reißel, Martin & Harlaß, Carsten, 2016. "Semi-parametric survival function estimators deduced from an identifying Volterra type integral equation," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 273-284.
    3. Subramanian, Sundarraman, 2016. "Bootstrap likelihood ratio confidence bands for survival functions under random censorship and its semiparametric extension," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 58-81.
    4. Shoubhik Mondal & Sundarraman Subramanian, 2016. "Simultaneous confidence bands for Cox regression from semiparametric random censorship," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 122-144, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subramanian, Sundarraman, 2016. "Bootstrap likelihood ratio confidence bands for survival functions under random censorship and its semiparametric extension," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 58-81.
    2. Amélie Detais & Jean-François Dupuy, 2011. "Maximum likelihood estimation in a partially observed stratified regression model with censored data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1183-1206, December.
    3. Nubyra Ahmed & Sundarraman Subramanian, 2016. "Semiparametric simultaneous confidence bands for the difference of survival functions," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 504-530, October.
    4. Lu, Zudi & Zhang, Wenyang, 2012. "Semiparametric likelihood estimation in survival models with informative censoring," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 187-211.
    5. Lu Chen & Li Hsu & Kathleen Malone, 2009. "A Frailty-Model-Based Approach to Estimating the Age-Dependent Penetrance Function of Candidate Genes Using Population-Based Case-Control Study Designs: An Application to Data on the BRCA1 Gene," Biometrics, The International Biometric Society, vol. 65(4), pages 1105-1114, December.
    6. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    7. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.
    8. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    9. Yanqing Sun & Rajeshwari Sundaram & Yichuan Zhao, 2009. "Empirical Likelihood Inference for the Cox Model with Time‐dependent Coefficients via Local Partial Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 444-462, September.
    10. Chen, Songxi, 2012. "Estimation in semiparametric models with missing data," MPRA Paper 46216, University Library of Munich, Germany.
    11. Mingzhe Wu & Ming Zheng & Wen Yu & Ruofan Wu, 2018. "Estimation and variable selection for semiparametric transformation models under a more efficient cohort sampling design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 570-596, September.
    12. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    13. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    14. Portier, Francois & El Ghouch, Anouar & Van Keilegom, Ingrid, 2015. "Efficiency and Bootstrap in the Promotion Time Cure Model," LIDAM Discussion Papers ISBA 2015012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Christoph Breunig & Peter Haan, 2018. "Nonparametric Regression with Selectively Missing Covariates," Papers 1810.00411, arXiv.org, revised Oct 2020.
    16. Amorim, Ana Paula & de Uña-Álvarez, Jacobo & Meira-Machado, Luís, 2011. "Presmoothing the transition probabilities in the illness-death model," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 797-806, July.
    17. Alexander Begun & Anatoli Yashin, 2019. "Study of the bivariate survival data using frailty models based on Lévy processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 37-67, March.
    18. Song Chen & Ingrid Van Keilegom, 2013. "Estimation in semiparametric models with missing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 785-805, August.
    19. Hyokyoung G. Hong & Xuerong Chen & David C. Christiani & Yi Li, 2018. "Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes," Biometrics, The International Biometric Society, vol. 74(2), pages 421-429, June.
    20. Qi Liu & Chun Li & Valentine Wanga & Bryan E. Shepherd, 2018. "Covariate†adjusted Spearman's rank correlation with probability†scale residuals," Biometrics, The International Biometric Society, vol. 74(2), pages 595-605, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:123:y:2014:i:c:p:281-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.