IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v30y2024i4d10.1007_s10985-024-09632-z.html
   My bibliography  Save this article

Copula-based analysis of dependent current status data with semiparametric linear transformation model

Author

Listed:
  • Huazhen Yu

    (Zhejiang University)

  • Rui Zhang

    (Zhejiang University)

  • Lixin Zhang

    (Zhejiang University
    Zhejiang Gongshang University)

Abstract

This paper discusses regression analysis of current status data with dependent censoring, a problem that often occurs in many areas such as cross-sectional studies, epidemiological investigations and tumorigenicity experiments. Copula model-based methods are commonly employed to tackle this issue. However, these methods often face challenges in terms of model and parameter identification. The primary aim of this paper is to propose a copula-based analysis for dependent current status data, where the association parameter is left unspecified. Our method is based on a general class of semiparametric linear transformation models and parametric copulas. We demonstrate that the proposed semiparametric model is identifiable under certain regularity conditions from the distribution of the observed data. For inference, we develop a sieve maximum likelihood estimation method, using Bernstein polynomials to approximate the nonparametric functions involved. The asymptotic consistency and normality of the proposed estimators are established. Finally, to demonstrate the effectiveness and practical applicability of our method, we conduct an extensive simulation study and apply the proposed method to a real data example.

Suggested Citation

  • Huazhen Yu & Rui Zhang & Lixin Zhang, 2024. "Copula-based analysis of dependent current status data with semiparametric linear transformation model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 742-775, October.
  • Handle: RePEc:spr:lifeda:v:30:y:2024:i:4:d:10.1007_s10985-024-09632-z
    DOI: 10.1007/s10985-024-09632-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-024-09632-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-024-09632-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Chi-Chung & Chen, Yi-Hau, 2011. "Nonparametric maximum likelihood analysis of clustered current status data with the gamma-frailty Cox model," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1053-1060, February.
    2. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    3. Lu, Wenbin & Zhang, Hao Helen, 2010. "On Estimation of Partially Linear Transformation Models," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 683-691.
    4. Ling Ma & Tao Hu & Jianguo Sun, 2015. "Sieve maximum likelihood regression analysis of dependent current status data," Biometrika, Biometrika Trust, vol. 102(3), pages 731-738.
    5. Torben Martinussen, 2002. "Efficient estimation in additive hazards regression with current status data," Biometrika, Biometrika Trust, vol. 89(3), pages 649-658, August.
    6. Jane Paik Kim & Wenbin Lu & Tony Sit & Zhiliang Ying, 2013. "A Unified Approach to Semiparametric Transformation Models Under General Biased Sampling Schemes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 217-227, March.
    7. Deresa, N.W. & Van Keilegom, I. & Antonio, K., 2022. "Copula-based inference for bivariate survival data with left truncation and dependent censoring," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 1-21.
    8. Kani Chen & Xingwei Tong, 2010. "Varying coefficient transformation models with censored data," Biometrika, Biometrika Trust, vol. 97(4), pages 969-976.
    9. Li, Yi & Lin, Xihong, 2006. "Semiparametric Normal Transformation Models for Spatially Correlated Survival Data," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 591-603, June.
    10. Osman, Muhtarjan & Ghosh, Sujit K., 2012. "Nonparametric regression models for right-censored data using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 559-573.
    11. Samiran Sinha & Yanyuan Ma, 2014. "Semiparametric analysis of linear transformation models with covariate measurement errors," Biometrics, The International Biometric Society, vol. 70(1), pages 21-32, March.
    12. Kani Chen, 2002. "Semiparametric analysis of transformation models with censored data," Biometrika, Biometrika Trust, vol. 89(3), pages 659-668, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Zhiping & Zhou, Yong, 2015. "Partially linear transformation models with varying coefficients for multivariate failure time data," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 144-166.
    2. Li, Shuwei & Hu, Tao & Wang, Peijie & Sun, Jianguo, 2017. "Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 75-86.
    3. Xuan Wang & Qihua Wang & Xiao-Hua Zhou, 2015. "Partially varying coefficient single-index additive hazard models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 817-841, October.
    4. Wang, Xuan & Wang, Qihua, 2015. "Semiparametric linear transformation model with differential measurement error and validation sampling," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 67-80.
    5. Huazhen Lin & Ling Zhou & Chunhong Li & Yi Li, 2014. "Semiparametric transformation models for semicompeting survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 599-607, September.
    6. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    7. Du, Mingyue & Li, Huiqiong & Sun, Jianguo, 2021. "Regression analysis of censored data with nonignorable missing covariates and application to Alzheimer Disease," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    8. Da Xu & Hui Zhao & Jianguo Sun, 2018. "Joint analysis of interval-censored failure time data and panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 94-109, January.
    9. López-Cheda, Ana & Cao, Ricardo & Jácome, M. Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 144-165.
    10. Donglin Zeng & Fei Gao & D. Y. Lin, 2017. "Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data," Biometrika, Biometrika Trust, vol. 104(3), pages 505-525.
    11. Mengzhu Yu & Mingyue Du, 2022. "Regression Analysis of Multivariate Interval-Censored Failure Time Data under Transformation Model with Informative Censoring," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    12. Xiaoguang Wang & Ziwen Wang, 2021. "EM algorithm for the additive risk mixture cure model with interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 91-130, January.
    13. Mengyue Zhang & Shishun Zhao & Tao Hu & Da Xu & Jianguo Sun, 2023. "Regression Analysis of Dependent Current Status Data with Left Truncation," Mathematics, MDPI, vol. 11(16), pages 1-13, August.
    14. Ruiwen Zhou & Huiqiong Li & Jianguo Sun & Niansheng Tang, 2022. "A new approach to estimation of the proportional hazards model based on interval-censored data with missing covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 335-355, July.
    15. Qingzhi Zhong & Huazhen Lin & Yi Li, 2021. "Cluster non‐Gaussian functional data," Biometrics, The International Biometric Society, vol. 77(3), pages 852-865, September.
    16. Lopez-Cheda , Ana & Cao, Ricardo & Jacome, Maria Amalia & Van Keilegom, Ingrid, 2015. "Nonparametric incidence and latency estimation in mixture cure models," LIDAM Discussion Papers ISBA 2015014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Chyong-Mei Chen & Pao-Sheng Shen, 2018. "Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 250-272, April.
    18. Man-Hua Chen & Xingwei Tong, 2020. "Varying coefficient transformation cure models for failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 518-544, July.
    19. Yuan Wu & Christina D. Chambers & Ronghui Xu, 2019. "Semiparametric sieve maximum likelihood estimation under cure model with partly interval censored and left truncated data for application to spontaneous abortion," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 507-528, July.
    20. Yu-Jen Cheng & Chiung-Yu Huang, 2014. "Combined estimating equation approaches for semiparametric transformation models with length-biased survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 608-618, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:30:y:2024:i:4:d:10.1007_s10985-024-09632-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.